Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Muscle contraction filaments

Proteins can be broadly classified into fibrous and globular. Many fibrous proteins serve a stmctural role (11). CC-Keratin has been described. Fibroin, the primary protein in silk, has -sheets packed one on top of another. CoUagen, found in connective tissue, has a triple-hehcal stmcture. Other fibrous proteins have a motile function. Skeletal muscle fibers are made up of thick filaments consisting of the protein myosin, and thin filaments consisting of actin, troponin, and tropomyosin. Muscle contraction is achieved when these filaments sHde past each other. Microtubules and flagellin are proteins responsible for the motion of ciUa and bacterial dageUa. [Pg.211]

Figure 14.11 The sliding filament model of muscle contraction. The actin (red) and myosin (green) filaments slide past each other without shortening. Figure 14.11 The sliding filament model of muscle contraction. The actin (red) and myosin (green) filaments slide past each other without shortening.
Figure 14.12 The swinging cross-bridge model of muscle contraction driven by ATP hydrolysis, (a) A myosin cross-bridge (green) binds tightly in a 45 conformation to actin (red), (b) The myosin cross-bridge is released from the actin and undergoes a conformational change to a 90 conformation (c), which then rebinds to actin (d). The myosin cross-bridge then reverts back to its 45° conformation (a), causing the actin and myosin filaments to slide past each other. This whole cycle is then repeated. Figure 14.12 The swinging cross-bridge model of muscle contraction driven by ATP hydrolysis, (a) A myosin cross-bridge (green) binds tightly in a 45 conformation to actin (red), (b) The myosin cross-bridge is released from the actin and undergoes a conformational change to a 90 conformation (c), which then rebinds to actin (d). The myosin cross-bridge then reverts back to its 45° conformation (a), causing the actin and myosin filaments to slide past each other. This whole cycle is then repeated.
Certain proteins endow cells with unique capabilities for movement. Cell division, muscle contraction, and cell motility represent some of the ways in which cells execute motion. The contractile and motile proteins underlying these motions share a common property they are filamentous or polymerize to form filaments. Examples include actin and myosin, the filamentous proteins forming the contractile systems of cells, and tubulin, the major component of microtubules (the filaments involved in the mitotic spindle of cell division as well as in flagella and cilia). Another class of proteins involved in movement includes dynein and kinesin, so-called motor proteins that drive the movement of vesicles, granules, and organelles along microtubules serving as established cytoskeletal tracks. ... [Pg.124]

FIGURE 17.23 The mechanism of skeletal muscle contraction. The free energy of ATP hydrolysis drives a conformational change in the myosin head, resulting in net movement of the myosin heads along the actin filament. Inset) A ribbon and space-filling representation of the actin—myosin interaction. (SI myosin image courtesy of Ivan Rayment and Hazel M. Holden, University of Wiseonsin, Madison.)... [Pg.553]

The structure and arrangement of the actin and myosin filaments in muscle. During muscle contraction the cyclic interaction of myosin crossbridges with actin filaments draws the actin filaments across the myosin filaments. [Pg.173]

Studies on muscle contraction carried out between 1930 and 1960 heralded the modem era of research on cytoskeletal stmctures. Actin and myosin were identified as the major contractile proteins of muscle, and detailed electron microscopic studies on sarcomeres by H.E. Huxley and associates in the 1950s produced the concept of the sliding filament model, which remains the keystone to an understanding of the molecular mechanisms responsible for cytoskeletal motility. [Pg.3]

Smooth muscles, as the name implies, do not contain sarcomeres. In fact, it was initially difficult to demonstrate the presence of thick filaments in smooth muscle, although their presence is now well-established. On the other hand, it is very difficult to demonstrate thick filaments in highly motile cells, such as macrophages and neutrophils, and this may reflect the necessity to rapidly form and redistribute cytoskeletal elements during migration. Thick filaments in smooth muscles appear to be considerably longer than those in striated muscles. They run diagonally in smooth muscle cells and attach to the membrane at structures known as dense bodies. Thus, there is a cork-screw effect when smooth muscles contract (Warshaw etal., 1987). [Pg.64]

Development of the Sliding Filament Theory of Muscle Contraction... [Pg.201]

DEVELOPMENT OF THE SLIDING FILAMENT THEORY OF MUSCLE CONTRACTION... [Pg.209]

X-ray diffraction of live muscle (H.E. Huxley and Brown, 1967) showed the structure of the thick and thin filaments and how they changed when the muscle contracted, or was put into rigor (in rigor muscle, ATP is absent from the muscle. [Pg.213]

The ability of S-2 to act as a flexible link also explained another problem in muscle contraction. When muscle contracts its volume remains constant. As a muscle shortens, and the filaments slide past each other, the spacing between the filaments increases as part of this constant volume behavior. Therefore, the crossbridges have to be able to interact with actin over a wide range of filament spacings. The presence of the flexible link in S-2 would allow this to occur. [Pg.216]

The Sliding Filament Cross-Bridge Model Is the Foundation on Which Current Thinking About Muscle Contraction Is Built... [Pg.557]

How can hydrolysis of ATP produce macroscopic movement Muscle contraction essentially consists of the cychc attachment and detachment of the S-1 head of myosin to the F-actin filaments. This process can also be referred to as the making and breaking of cross-bridges. The attachment of actin to myosin is followed by conformational changes which are of particular importance in the S-1 head and are dependent upon which nucleotide is present (ADP or ATP). These changes result... [Pg.561]


See other pages where Muscle contraction filaments is mentioned: [Pg.2832]    [Pg.53]    [Pg.290]    [Pg.292]    [Pg.292]    [Pg.297]    [Pg.297]    [Pg.542]    [Pg.544]    [Pg.546]    [Pg.552]    [Pg.558]    [Pg.559]    [Pg.173]    [Pg.416]    [Pg.356]    [Pg.32]    [Pg.62]    [Pg.65]    [Pg.66]    [Pg.66]    [Pg.69]    [Pg.71]    [Pg.86]    [Pg.91]    [Pg.202]    [Pg.202]    [Pg.212]    [Pg.216]    [Pg.217]    [Pg.557]    [Pg.558]    [Pg.559]    [Pg.563]    [Pg.578]   


SEARCH



Contracting muscle

Muscle contraction

Muscle contraction sliding filament

Muscle contraction sliding filament cross-bridge model

Muscle contraction sliding-filament model

© 2024 chempedia.info