Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiconfiguration valence bond

The author and his students have used the term multiconfiguration valence bond (MCVB) to describe a linear variation calculation involving more than one VB structure (function). This practice will be continued in the present book. Other terms have been used that mean essentially the same thing[34]. We defer a fuller... [Pg.38]

This is, of course, the approach used by all of the early VB workers. In more recent times, after computing machinery allowed ab initio treatments, this is the sort of wave function proposed by Balint-Kurti and Karplus[34], which they called a multi structure approach. The present author and his students have proposed the multiconfiguration valence bond (MCVB) approach, which differs from the Balint-Kurti-Karplus wave function principally in the way the , are chosen. [Pg.108]

Multiconfiguration Valence Bond Methods with Optimized Orbitals... [Pg.246]

The Valence Bond Self-Consistent Field (VBSCF) method has been devised by Balint-Kurti and van Lenthe (32), and was further modified by Verbeek (6,33) who also developed an efficient implementation in a package called TURTLE (11). Basically, the VBSCF method is a multiconfiguration SCF procedure that allows the use of nonorthogonal orbitals of any type. The wave function is given as a linear combination of VB structures, (Eq. 9.7). [Pg.246]

Other multiconfiguration VB methods have also been devised, like the biorthogonal valence bond method of McDouall (35,36) or the spin-free approach of McWeeny (37). For an overview of these methods, the reader is advised to consult a recent review (1). [Pg.247]

In most modern valence bond calculations the wavefunction takes the form of a multiconfigurational expansion... [Pg.229]

In the last few years, the polarizable continuum model for the study of solvation has been extended to consider multideterminantal wavefunctions. Such novel techniques allow the study of the most important solvent effects on chemical reactions. In this context, the valence bond theory provides a way to analyze such effects through the transcription of the, generally, complicated multiconfigurational wavefunctions into sums of few selected classical structures, which are, in fact, more useful to understand the electron distribution rearrangement along a reaction path. In this chapter, the valence bond analysis of CASSCF wavefunctions calculated for chemical reactions in solution is discussed in details. By way of example, the results for some basic chemical processes are also reported. [Pg.415]

Our multireference M0Uer-Plesset (MRMP) perturbation method [1-4] and MC-QDPT quasi-degenerate perturbation theory (QDPT) with multiconfiguration self-consistent field reference functions (MC-QDPT) [5,6] are perturbation methods of such a type. Using these perturbation methods, we have clarified electronic stmctures of various systems and demonstrated that they are powerful tools for investigating excitation spectra and potential energy surfaces of chemical reactions [7-10]. In the present section, we review these multireference perturbation methods as well as a method for interpreting the electronic structure in terms of valence-bond resonance structure based on the CASSCF wavefunction. [Pg.508]

Other approaches to model transition states with force fields are the empirical valence bond model (EVB). [336] the reactive force field (RFF) [337] and the multiconfigurational molecular mechanics (MCMM) method [338]. [Pg.108]

The wave function of fragment A, ll a, can either be a single determinant from HF theory or Kohn-Sham DFT, or a multiconfiguration wave function derived from complete active space self-consistent field (CASSCF) or valence bond (VB) calculations. [Pg.37]

The molecular orbital (MO) is the basic concept in contemporary quantum chemistry. " It is used to describe the electronic structure of molecular systems in almost all models, ranging from simple Hiickel theory to the most advanced multiconfigurational treatments. Only in valence bond (VB) theory is it not used. Here, polarized atomic orbitals are instead the basic feature. One might ask why MOs have become the key concept in molecular electronic structure theory. There are several reasons, but the most important is most likely the computational advantages of MO theory compared to the alternative VB approach. The first quantum mechanical calculation on a molecule was the Heitler-London study of H2 and this was the start of VB theory. It was found, however, that this approach led to complex structures of the wave funetion when applied to many-electron systems and the mainstream of quantum ehemistry was to take another route, based on the success of the central-field model for atoms introduced by by Hartree in 1928 and developed into what we today know as the Hartree-Foek (HF) method, by Fock, Slater, and co-workers (see Ref. 5 for a review of the HF method for atoms). It was found in these calculations of atomic orbitals that a surprisingly accurate description of the electronic structure could be achieved by assuming that the electrons move independently of each other in the mean field created by the electron cloud. Some correlation was introduced between electrons with... [Pg.519]

Chapter 4 discusses configuration interaction (Cl) and is the first of the four chapters that deal with approaches incorporating electron correlation. One-electron density matrices, natural orbitals, the multiconfiguration self-consistent-field approximation, and the generalized valence bond method are... [Pg.479]

Classical Dynamics of Nonequilibrium Processes in Fluids Integrating the Classical Equations of Motion Control of Microworld Chemical and Physical Processes Mixed Quantum-Classical Methods Multiphoton Excitation Non-adiabatic Derivative Couplings Photochemistry Rates of Chemical Reactions Reactive Scattering of Polyatomic Molecules Spectroscopy Computational Methods State to State Reactive Scattering Statistical Adiabatic Channel Models Time-dependent Multiconfigurational Hartree Method Trajectory Simulations of Molecular Collisions Classical Treatment Transition State Theory Unimolecular Reaction Dynamics Valence Bond Curve Crossing Models Vibrational Energy Level Calculations Vibronic Dynamics in Polyatomic Molecules Wave Packets. [Pg.2078]


See other pages where Multiconfiguration valence bond is mentioned: [Pg.254]    [Pg.21]    [Pg.36]    [Pg.4]    [Pg.124]    [Pg.254]    [Pg.21]    [Pg.36]    [Pg.4]    [Pg.124]    [Pg.334]    [Pg.154]    [Pg.150]    [Pg.168]    [Pg.257]    [Pg.281]    [Pg.420]    [Pg.428]    [Pg.738]    [Pg.153]    [Pg.105]    [Pg.3]    [Pg.331]    [Pg.666]    [Pg.2]    [Pg.2]    [Pg.212]    [Pg.65]    [Pg.3]    [Pg.19]    [Pg.4]    [Pg.333]    [Pg.134]    [Pg.213]    [Pg.1177]    [Pg.581]    [Pg.36]   
See also in sourсe #XX -- [ Pg.20 , Pg.21 , Pg.43 ]




SEARCH



Multiconfiguration

© 2024 chempedia.info