Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multicomponent polymer systems definition

This chapter summarizes the thermodynamics of multicomponent polymer systems, with special emphasis on polymer blends and mixtures. After a brief introduction of the relevant thermodynamic principles - laws of thermodynamics, definitions, and interrelations of thermodynamic variables and potentials - selected theories of liquid and polymer mixtures are provided Specifically, both lattice theories (such as the Hory-Huggins model. Equation of State theories, and the gas-lattice models) and ojf-lattice theories (such as the strong interaction model, heat of mixing approaches, and solubility parameter models) are discussed and compared. Model parameters are also tabulated for the each theory for common or representative polymer blends. In the second half of this chapter, the thermodynamics of phase separation are discussed, and experimental methods - for determining phase diagrams or for quantifying the theoretical model parameters - are mentioned. [Pg.172]

Just as it is not necessary for polymer chains to be linear, it is also not necessary for all repeat units to be the same. We have already mentioned molecules like proteins where a wide variety of different repeat units are present. Among synthetic polymers, those in which a single kind of repeat unit are involved are called homopolymers, and those containing more than one kind of repeat unit are copolymers. Note that these definitions are based on the repeat unit, not the monomer. An ordinary polyester is not a copolymer, even though two different monomers, acids and alcohols, are its monomers. By contrast, copolymers result when different monomers bond together in the same way to produce a chain in which each kind of monomer retains its respective substituents in the polymer molecule. The unmodified term copolymer is generally used to designate the case where two different repeat units are involved. Where three kinds of repeat units are present, the system is called a terpolymer where there are more than three, the system is called a multicomponent copolymer. The copolymers we discuss in this book will be primarily two-component molecules. We shall discuss copolymers in Chap. 7, so the present remarks are simply for purposes of orientation. [Pg.10]

In principle, any type of sample can be analysed by SEC provided that it can be solubilised and that there are no enthalpic interactions between sample and packing material. By definition then, this technique cannot be carried out on vulcanisates and even unvulcanised fully compounded rubber samples can present problems due to filler-rubber interactions. The primary use of SEC is to determine the whole MWD of polymers and the various averages (number, viscosity, weight, z-average) based on a calibration curve and to allow qualitative comparisons of different samples. Many commercial polymers have a broad MWD leading to strong peak overlap in the chromatography of complex multicomponent systems. [Pg.261]

Adsorption equilibria for polymers out of concentrated solutions as function of concentration frequently exhibit very pronounced maxima (Fig. 12). These unusual curves can be accounted for if one assumes that the adsorbed species are in aggregation equilibrium in the solution, depending upon the amount of surface area per unit volume of solution. Hence one expects that the adsorption equilibrium out of concentrated polymer solution may not only be approached with "infinite slowness but is also a function of the system characteristics, and the definition of reproducible conditions contains many more variables than one is used to from the more common work with dilute solution. This complexity is particularly awkward when one deals with the important case of competitive adsorption of polymers out of concentrated multicomponent solutions, a common phenomenon in many industrial processes, such as paint adhesion, corrosion prevention, lubrication, especially wear prevention, etc. [Pg.137]


See other pages where Multicomponent polymer systems definition is mentioned: [Pg.17]    [Pg.6]    [Pg.67]    [Pg.86]    [Pg.145]    [Pg.422]    [Pg.293]    [Pg.808]    [Pg.43]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Definition multicomponent

Multicomponent polymer systems

Polymer multicomponent

Polymers definition

System definition

Systems multicomponent

© 2024 chempedia.info