Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multi-component calculations equilibria

Adsorption-desorption method An initially unloaded q = 0) column is equilibrated by a feed concentration, Cfeed. which may be a single-component or multi-component mixture. Equilibrium is achieved by pumping a sufficient quantity of feed through this column. The plant is then fiushed without the column to remove the solute solution. Afterwards, all solute is eluted from the column, collected, and analyzed to obtain the desorbed amount mdes.i- The equilibrium loading qi(Cfeed) for each component i can be calculated according to... [Pg.384]

An equilibrium-flash calculation (using the same equations as in case A above) is made at each point in time to find the vapor and liquid flow rates and properties immediately after the pressure letdown valve (the variables with the primes F , F l, y], x j,.. . shown in Fig. 3.8). These two streams are then fed into the vapor and liquid phases. The equations describing the two phases will be similar to Eqs. (3.40) to (3.42) and (3.44) to (3.46) with the addition of (1) a multi-component vapor-liquid equilibrium equation to calculate Pi and (2) NC — 1 component continuity equations for each phase. Controller equations relating 1 to Fi and P to F complete the model. [Pg.56]

CALPHAD calculation. To overcome this difficulty they combined a semi-empirical model from Reddy and Blander (1987, 1989) with an equilibrium CALPHAD calculation for the multi-component oxide system Si02-Al203-Ti02-CaO-MgO-MnO-FeO. The approach can be summarised as follows. [Pg.400]

The DICTRA programme is based on a numerical solution of multi-component diffusion equations assuming that thermodynamic equilibrium is locally maintained at phase interfaces. Essentially the programme is broken down into four modules which involve (1) the solution of the diffusion equations, (2) the calculation of... [Pg.450]

A variety of other thermodynamic functions may be evaluated from this. For example, the chemical potential — the quantity equalized in equilibrium calculations — of species / in a multi-component system is given by... [Pg.420]

In order to determine the products of decomposition for equilibrium reactions the Kistiakowsky-Wilson or the Springall Roberts rules can be applied as a starting point. From the products of decomposition the heat and temperature of explosion can then be calculated. The temperature of explosion can then be used to calculate the products of decomposition. In practice, this process is repeated many times until there is agreement between the answers obtained. Equilibria of complex reactions and of multi-component systems are today obtained by computer however, the ability to use tabulated data is useful in predicting the direction and extent of the reaction. [Pg.104]

To perform a further detailed process calculation on this multi-component absorption and stripping process, vapor liquid equilibrium data for methane, hydrogen, and carbon monoxide is... [Pg.237]

CVD normally involves a multi-component and a multi-phase system. There are various ways to calculate thermodynamic equilibrium in multicomponent systems. The following is a brief discussion of the optimization method where the minimization of Gibbs free energy can be achieved. The free energy G of a system consisting of m gaseous species and s solid phases can be described by. [Pg.27]

Noolandi and coworkers [82-84] investigated the equilibrium interfacial properties for the multi-component mixtures containing a block copolymer by the numerical calculations based on the self-consistent mean field theory. For both A/B/A-b-B and A/B/C-h-D systems, they found that the interfacial tension decreases and the concentration of block copolymer at the interface increases with increasing the chain length of block copolymer. Israels et al. [85] examined the interfacial behavior of symmetric A-b-B diblock copolymers in a blend of... [Pg.31]

This chapter considers the vapor-liquid equilibrium of mixtures, conditions for bubble and dew points of gaseous mixtures, isothermal equilibrium flash calculations, the design of distillation towers with valve trays, packed tower design. Smoker s equation for estimating the number of plates in a binary mixture, and finally, the computation of multi-component recovery and minimum trays in distillation columns. [Pg.469]

The computer program PROG72 performs equilibrium flash calculations for an ideal multi-component mixture. The program listed determines the moles of each component in the liquid and vapor phases... [Pg.532]

The Wilson equation is capable of representing both polar and non-polar molecules in multi-component mixtures using only binary parameters. It cannot, however, represent liquid-liquid equilibrium systems. The activity coefficients in a multi-component mixture are calculated by the Wilson equation as follows (Prausnitz et al., 1967) ... [Pg.39]

The separation of a multi-component mixture into products with different compositions in a multistage process is governed by phase equilibrium relations and energy and material balances. It is not uncommon in simulation studies to require certain column product rates, compositions, or component recoveries to satisfy given specifications with no concern for conditions within the column. Such would be the case when downstream processing of the products is of primary interest. In these instances, one would be concerned only with overall component balances around the column but not necessarily with heat balances or equilibrium relations. Separation would thus be arbitrarily defined, and the problem would be to calculate product rates and compositions. The actual performance of the separation process is analyzed independently in all the following chapters. [Pg.165]

Chemical processes represent multi-component systems for which the equilibrium state of the surroundings has to he defined, in order to evaluate the availability of chemical mixtures (U, 5.). However, if only availability consumptions are to be evaluated, the availability itself need not be evaluated, and the specification of the reference environment can be avoided. Entropy balances can be used in lieu of availability balances, and the calculations are thereby simplified. [Pg.125]

Equation (5.56) is fundamental for calculations regarding multi-component mixtures, which are designated in thermodynamics by PVTx systems. From this we can obtain the generalisation of the phase equilibrium condition as follows ... [Pg.150]

Knowing the equation of state for a multi-component system of interest, one can determine thermodynamic functions consistent with basic thermodynamic relations [5]. In view of applications to calculation of the liquid-vapor equilibrium, we now turn to considering the definition of chemical potentials of components. [Pg.91]

The program utilized for this study provides the capability of establishing solution and solid phase equilibria for a multi-component system of up to thirty five components and 500 solution and solid species. Using equilibrium constant data for metals, Inorganic anions, and organic ligands (77) the iterative calculation provides for the determination of metal speciatlon as a function of pH and component concentration. Table I and II provide calculated constituent concentrations for the Purina rat chow used in the animal feeding studies for the basic urine composition. [Pg.389]

In theory, if composition of the mixture is known, then calculation of any characteristic property of the multi-component mixture can be performed by the classical physical and chemical analysis methods. For binary liquid system, it is possible only if all chemical forms (including all possible associates), their stoichiometry, stability constants, and their individual physical and chemical properties are well determined. A large volume of correct quantitative thermodynamic data required for these calculations is not available. Due to these obstacles, data on permittivity, viscosity and other macro-properties of mixed solvents with interacting components are obtained by empirical means. Data on empirical physical properties of liquid systems can be found in published handbooks.Principles of characteristic changes due to the compositional change of liquid mixtures with interacting components are discussed here. Assessment of nature of such interactions can only be made after evaluation of the equilibrium constant (energy) of such interactions between solvents. [Pg.518]

This series of papers contains an extensive array of correlated data on aqueous electrolyte solutions, much of It having been calculated using the system of equations given In paper I In this series. The contents of these papers have been summarized by Pitzer In a chapter in the book edited by Pytkowicz (see Item [123]). The data Include activity and osmotic coefficients, relative apparent molar enthalpies and heat capacities, excess Gibbs energies, entropies, heat capacities, volumes, and some equilibrium constants and enthalpies. Systems of Interest Include both binary solutions and multi-component mixtures. While most of the data pertain to 25 °C, the papers on sodium chloride, calcium chloride, and sodium carbonate cover the data at the temperatures for which experiments have been performed. Also see Items [48], [104], and [124]. [Pg.789]

The reactive distillation processes which combine reaction and gas liquid separation are of increasing interest for scientific investigation and industrial application. Nowadays, simulation and design of multi component reactive distillation is carried out using the non equilibrium stage model (NEQ model) due to the limitation of conventional equilibrium stage efficiency calculations for equilibrium model (Lee Dudukovic (1998), Baur al. (2000), Taylor Krishna (1993), and Wesselingh (1997)). So, the NEQ model is developed by numerous authors. But there is a lack of experimental data in order to validate the model. Some input/output measurements are available but they provide little information about the behaviour inside the column. With this in mind, our paper is focus on the NEQ models and experimental validation. [Pg.893]


See other pages where Multi-component calculations equilibria is mentioned: [Pg.372]    [Pg.182]    [Pg.138]    [Pg.292]    [Pg.294]    [Pg.12]    [Pg.13]    [Pg.645]    [Pg.47]    [Pg.275]    [Pg.599]    [Pg.774]    [Pg.814]    [Pg.105]    [Pg.376]    [Pg.612]    [Pg.366]    [Pg.341]    [Pg.277]    [Pg.124]    [Pg.39]    [Pg.86]    [Pg.166]    [Pg.718]    [Pg.166]    [Pg.137]    [Pg.811]    [Pg.72]   
See also in sourсe #XX -- [ Pg.332 , Pg.333 , Pg.334 , Pg.335 , Pg.336 , Pg.337 , Pg.338 , Pg.339 , Pg.340 , Pg.341 , Pg.342 , Pg.343 ]




SEARCH



Equilibria components

Equilibrium calculations

Equilibrium multi-component

Multi-components

© 2024 chempedia.info