Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mossbauer spectroscopy Iron catalysts

The application of Mossbauer spectroscopy to the investigation of catalysts began around 1970, and subsequently became quite popular, owing mainly to the importance of iron - with its rather rich chemistry - in many catalysts. By 1990 over 600 scientific reports had been published on the subject [19]. Most applications of Mossbauer spectroscopy to catalysts fall into one of the following categories ... [Pg.134]

Mossbauer spectroscopy is a specialist characterization tool in catalysis. Nevertheless, it has yielded essential information on a number of important catalysts, such as the iron catalyst for ammonia and Fischer-Tropsch synthesis, as well as the CoMoS hydrotreating catalyst. Mossbauer spectroscopy provides the oxidation state, the internal magnetic field, and the lattice symmetry of a limited number of elements such as iron, cobalt, tin, iridium, ruthenium, antimony, platinum and gold, and can be applied in situ. [Pg.147]

Figure 4.17 illustrates how Mossbauer spectroscopy reveals the identity of the major iron phases in a supported iron catalyst after different treatments. The top spectrum belongs to a fresh Fe/Ti02 catalyst, i.e. after impregnation and drying. [Pg.149]

Fe/Ir catalysts In situ Fe and Ir Mossbauer spectroscopy of silica-supported Fe/Ir catalysts with different iron to iridium ratios following pretreatment in hydrogen show that the reduction of the Fe component is enhanced by the presence of Ir metal. The presence of Ir was found to increase the catalytic activity in hydrogenation of carbon monoxide and also to influence selectivity... [Pg.333]

Et4N]2[Fe2lr2(CO)i2] cluster precursor, which exhibit a high activity in the synthesis of methanol from CO and H2, were studied by Ir and Fe Mossbauer spectroscopy. The study extends from the precursors via the fresh to the aged catalysts. The presence of iridium in the metallic state as well as the presence of trivalent, divalent and alloyed iron is detected. Representative Ir and Fe Mossbauer spectra are shown in Fig. 7.69. Information about the adsorption on the surface of MgO... [Pg.335]

Three series of Au nanoparticles on oxidic iron catalysts were prepared by coprecipitation, characterized by Au Mossbauer spectroscopy, and tested for their catalytic activity in the room-temperature oxidation of CO. Evidence was found that the most active catalyst comprises a combination of a noncrys-taUine and possibly hydrated gold oxyhydroxide, AUOOH XH2O, and poorly crystalhzed ferrihydrate, FeH0g-4H20 [421]. This work represents the first study to positively identify gold oxyhydroxide as an active phase for CO oxidation. Later, it was confirmed that the activity in CO2 production is related with the presence of-OH species on the support [422]. [Pg.363]

Temperature-programmed reduction combined with x-ray absorption fine-structure (XAFS) spectroscopy provided clear evidence that the doping of Fischer-Tropsch synthesis catalysts with Cu and alkali (e.g., K) promotes the carburization rate relative to the undoped catalyst. Since XAFS provides information about the local atomic environment, it can be a powerful tool to aid in catalyst characterization. While XAFS should probably not be used exclusively to characterize the types of iron carbide present in catalysts, it may be, as this example shows, a useful complement to verify results from Mossbauer spectroscopy and other temperature-programmed methods. The EXAFS results suggest that either the Hagg or s-carbides were formed during the reduction process over the cementite form. There appears to be a correlation between the a-value of the product distribution and the carburization rate. [Pg.120]

The aim of this work was to apply combined temperature-programmed reduction (TPR)/x-ray absorption fine-structure (XAFS) spectroscopy to provide clear evidence regarding the manner in which common promoters (e.g., Cu and alkali, like K) operate during the activation of iron-based Fischer-Tropsch synthesis catalysts. In addition, it was of interest to compare results obtained by EXAFS with earlier ones obtained by Mossbauer spectroscopy to shed light on the possible types of iron carbides formed. To that end, model spectra were generated based on the existing crystallography literature for four carbide compounds of... [Pg.120]

These two examples illustrate how Mossbauer spectroscopy reveals the identity of iron phases in a catalyst after different treatments. The examples are typical for many applications of the technique in catalysis. A catalyst is reduced, carburized, sulfided, or passivated, and, after cooling down, its Mossbauer spectrum is taken at room temperature. However, a complete characterization of phases in a catalyst... [Pg.143]

The usual techniques for the determination of particle sizes of catalysts are electron microscopy, chemisorption, XRD line broadening or profile analysis and magnetic measurements. The advantage of using Mossbauer spectroscopy for this purpose is that one simultaneously characterizes the state of the catalyst. As the state of supported iron catalysts depends often on subtleties in the reduction, the simultaneous determination of particle size and degree of reduction as in the studies of Fig. 5.10 is an important advantage of Mossbauer spectroscopy. [Pg.146]

When the Fe-MnO catalyst is analyzed after use in the Fischer-Tropsch reaction (the synthesis of hydrocarbons from CO and H2), the XRD pattern in Fig. 6.2 reveals that all metallic iron has disappeared. Instead, a number of weak reflections are visible, which are consistent with the presence of iron carbides, as confirmed by Mossbauer spectroscopy [7]. The conversion of iron to carbides under Fischer-Tropsch conditions has been studied by many investigators and has been discussed in more detail in Chapter 5 on Mossbauer spectroscopy. [Pg.155]

The most direct information on the state of cobalt has come from Mossbauer spectroscopy, applied in the emission mode. As explained in Chapter 5, such experiments are done with catalysts that contain the radioactive isotope 57Co as the source and a moving single-line absorber. Great advantages of this method are that the Co-Mo catalyst can be investigated under in situ conditions and the spectrum of cobalt can be correlated to the activity of the catalyst. One needs to be careful, however, because the Mossbauer spectrum one obtains is strictly speaking not that of cobalt, but that of its decay product, iron. The safest way to go is therefore to compare the spectra of the Co-Mo catalysts with those of model compounds for which the state of cobalt is known. This was the approach taken... [Pg.272]

The present paper focuses on the interactions between iron and titania for samples prepared via the thermal decomposition of iron pentacarbonyl. (The results of ammonia synthesis studies over these samples have been reported elsewhere (4).) Since it has been reported that standard impregnation techniques cannot be used to prepare highly dispersed iron on titania (4), the use of iron carbonyl decomposition provides a potentially important catalyst preparation route. Studies of the decomposition process as a function of temperature are pertinent to the genesis of such Fe/Ti02 catalysts. For example, these studies are necessary to determine the state and dispersion of iron after the various activation or pretreatment steps. Moreover, such studies are required to understand the catalytic and adsorptive properties of these materials after partial decomposition, complete decarbonylation or hydrogen reduction. In short, Mossbauer spectroscopy was used in this study to monitor the state of iron in catalysts prepared by the decomposition of iron carbonyl. Complementary information about the amount of carbon monoxide associated with iron was provided by volumetric measurements. [Pg.10]

An iron-promoted cobalt molybdate catalyst (Fe0 03Co0.9 7MoO4) was studied by Maksimov et al. [195,196] with respect to the role of iron in the transfer of charge. Iron strongly enhances the catalytic activity and at the same time increases the conductivity by a factor of 100. Mossbauer spectroscopy reveals that 4% of the iron ions are present as Fe2+ impurity . This fraction is doubled at steady state reaction conditions, and indicates participation of iron in the charge transfer process. [Pg.153]

There has been to some degree the belief that Mossbauer spectroscopy, although in principle an ideal technique for catalyst studies, for practical purposes can only be applied to problems in catalysis if the catalyst contains either iron or tin. Therefore, one of the main purposes of this review is to show how Mossbauer spectroscopy can be directly extended to many additional Mossbauer atoms or isotopes (such as antimony, europium, nickel, ruthenium, gold, and tungsten) and, perhaps more importantly, how the technique can be extended to obtain information about systems that do not contain a Mossbauer atom. ... [Pg.123]

After performing FT synthesis on an unreduced iron oxide catalyst, Kuivila et al.12 observed 22% carbide in the bulk by Mossbauer spectroscopy, but only —3% carbide on the surface by XPS, and therefore concluded that a sub-surface carbide phase had formed beneath a magnetite surface layer. Based in part on this result, they conclude that magnetite is the active phase for FT synthesis. Reymond et a/.10 also observed substantial amounts of carbide by XRD, but little or no carbide by XPS. The observation of a 2-4 nm thick carbon layer on the carbide phase, but not on the magnetite, allows a reinterpretation of the data in these two papers. Sputtering of the surface carbon layer permits the XPS to see the underlying carbide, and therefore it is not necessary that the carbide be present beneath an oxide layer. Thus, measurement of low carbide signals by XPS cannot be interpreted to mean that carbide is absent from the catalyst surface, and therefore not an important phase in FT... [Pg.278]


See other pages where Mossbauer spectroscopy Iron catalysts is mentioned: [Pg.394]    [Pg.227]    [Pg.518]    [Pg.141]    [Pg.147]    [Pg.148]    [Pg.148]    [Pg.149]    [Pg.107]    [Pg.174]    [Pg.187]    [Pg.194]    [Pg.195]    [Pg.218]    [Pg.222]    [Pg.223]    [Pg.229]    [Pg.547]    [Pg.59]    [Pg.212]    [Pg.126]    [Pg.132]    [Pg.133]    [Pg.133]    [Pg.134]    [Pg.134]   
See also in sourсe #XX -- [ Pg.5 , Pg.5 , Pg.506 ]




SEARCH



Catalyst Mossbauer spectroscopy

Catalyst spectroscopy

Iron Mossbauer spectroscopy

Iron, catalyst

Mossbauer spectroscopy

© 2024 chempedia.info