Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Morse potential spectroscopy studies

We now show that the algebraic realization of the one-dimensional Morse potential can be adopted as a starting point for recovering this same problem in a conventional wave-mechanics formulation. This will be useful for several reasons (1) The connection between algebraic and conventional coordinate spaces is a rigorous one, which can be depicted explicitly, however, only in very simple cases, such as in the present one-dimensional situation (2) for traditional spectroscopy it can be useful to know that boson operators have a well-defined differential operator counterpart, which will be appreciated particularly in the study of transition operators and related quantities and (3) the one-dimensional Morse potential is not the unique outcome of the dynamical symmetry based on U(2). As already mentioned, the Poschl-Teller potential, being isospectral with the Morse potential in the bound-state portion of the spectrum, can be also described in an algebraic fashion. This is particularly apparent after a detailed study of the differential version of these two anharmonic potential models. Here we limit ourselves to a brief description. A more complete analysis can be found elsewhere [25]. As a... [Pg.491]

A computational algorithm for generating and modeling polymer particles for our simulations was developed to construct particles that are as similar as possible to the experimentally created polymer particles. We have examined a variety of PE nano-scale particles, allowing the systematic study of size-dependent physical properties of these particles [214]. The models have been well tested and shown to provide realistic representation of the structure and vibrational spectroscopy of a number of polymer systems harmonic/Morse potentials for the bond stretches, harmonic potential for bending between two bonds, a truncated... [Pg.50]

Early experimental spectroscopic investigations on Rg- XY complexes resulted in contradictory information regarding the interactions within them and their preferred geometries. Rovibronic absorption and LIF spectra revealed T-shaped excited- and ground-state configurations, wherein the Rg atom is confined to a plane perpendicular to the X—Y bond [10, 19, 28-30]. While these results were supported by the prediction of T-shaped structures based on pairwise additive Lennard-Jones or Morse atom-atom potentials, they seemed to be at odds with results from microwave spectroscopy experiments that were consistent with linear ground-state geometries [31, 32]. Some attempts were made to justify the contradictory results of the microwave and optical spectroscopic studies, and... [Pg.379]

A brief review and reassessment of data on the photophysics of benzene has been presented by Pereira. Evidence for the l E2g valence state has been obtained by u.v. two-photon spectroscopy.Slow electron impact excites fluorescence in thin films of benzene at 77 K as well as emission from isomers." The fluorescence yields and quenching by chloroform of alkyl-benzenes and 1-methylnaphthalene after excitation into Si, Sz, and S3 states and after photoionization have been measured. The channel-three process has been reconsidered in terms of the effects of local modes and Morse oscillator potentials. Excited-state dipole moments of some monosubstituted benzenes have been estimated from solvent effects on electronic absorption spectra, Structural imperfections influence the photochemistry of durene in crystals at low temperatures. Relaxation time studies on excited oxido-substituted p-oligophenylenes have been made by fluorescence depolarization... [Pg.10]


See other pages where Morse potential spectroscopy studies is mentioned: [Pg.151]    [Pg.134]   
See also in sourсe #XX -- [ Pg.254 , Pg.255 ]




SEARCH



Morse

Morse potential potentials

Potential Morse

Potential Spectroscopy

© 2024 chempedia.info