Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monte Carlo method described

We used the Monte Carlo method described in [S,6] for generating heterogeneous substrates from DSBM. We have considered uniform distributions for sites and bonds (A s=A b=1) with mean site energy Eskt 2.5 the site distribution is fixed while the bond distribution is shifted toward lower energies to increase the correlation degree. We used square lattices of size LsL, with ,=400 [ =700] sites for fi<0.S [t 0.S]. The approximation to thermodynamic equilibrium usually required 10 MCs. Then, the next -4x10 MCs were used to evaluate the equilibrium properties. [Pg.632]

In this section we will generalize the Monte Carlo methods described in section 2 for classical spin systems to quantum spin systems. As an example we will use the spin-1/2 quantum Heisenberg o XXZ models with Hamiltonian... [Pg.613]

For particles with a given interaction potential, e.g., disks characterized by a hard-core potential, E() and E a ) must be determined by employing the Monte Carlo methods described above. Again, more than 500 different simulations have to be carried out for each condition in order to obtain meaningful expectation values. [Pg.95]

Branched topologies as generated by the conditional Monte Carlo methods described in this section are most conveniently represented in matrix forms from graph theory [33, 53]. We name two of them the adjacency matrix A and the incidence matrix C (see Figure 9.22). They both describe connectivity. Note that in... [Pg.510]

Monte Carlo Method The Monte Carlo method makes use of random numbers. A digital computer can be used to generate pseudorandom numbers in the range from 0 to 1. To describe the use of random numbers, let us consider the frequency distribution cui ve of a particular factor, e.g., sales volume. Each value of the sales volume has a certain probabihty of occurrence. The cumulative probabihty of that value (or less) being realized is a number in the range from 0 to 1. Thus, a random number in the same range can be used to select a random value of the sales volume. [Pg.824]

In contrast to the single molecule case, Monte Carlo methods tend to be rather less efficient than molecular dynamics in sampling phase space for a bulk fluid. Consequently, most of the bulk simulations of liquid crystals described in Sect. 5.1 use molecular dynamics simulation methods. [Pg.47]

The method for estimating parameters from Monte Carlo simulation, described in mathematical detail by Reilly and Duever (in preparation), uses a Bayesian approach to establish the posterior distribution for the parameters based on a Monte Carlo model. The numerical nature of the solution requires that the posterior distribution be handled in discretised form as an array in computer storage using the method of Reilly 2). The stochastic nature of Monte Carlo methods implies that output responses are predicted by the model with some amount of uncertainty for which the term "shimmer" as suggested by Andres (D.B. Chambers, SENES Consultants Limited, personal communication, 1985) has been adopted. The model for the uth of n experiments can be expressed by... [Pg.283]

The Monte Carlo method as described so far is useful to evaluate equilibrium properties but says nothing about the time evolution of the system. However, it is in some cases possible to construct a Monte Carlo algorithm that allows the simulated system to evolve like a physical system. This is the case when the dynamics can be described as thermally activated processes, such as adsorption, desorption, and diffusion. Since these processes are particularly well defined in the case of lattice models, these are particularly well suited for this approach. The foundations of dynamical Monte Carlo (DMC) or kinetic Monte Carlo (KMC) simulations have been discussed by Eichthom and Weinberg (1991) in terms of the theory of Poisson processes. The main idea is that the rate of each process that may eventually occur on the surface can be described by an equation of the Arrhenius type ... [Pg.670]

Sometimes the theoretical or computational approach to description of molecular structure, properties, and reactivity cannot be based on deterministic equations that can be solved by analytical or computational methods. The properties of a molecule or assembly of molecules may be known or describable only in a statistical sense. Molecules and assemblies of molecules exist in distributions of configuration, composition, momentum, and energy. Sometimes, this statistical character is best captured and studied by computer experiments molecular dynamics, Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. Interaction potentials based on quantum mechanics, classical particle mechanics, continuum mechanics, or empiricism are specified and the evolution of the system is then followed in time by simulation of motions resulting from these direct... [Pg.77]

We review Monte Carlo calculations of phase transitions and ordering behavior in lattice gas models of adsorbed layers on surfaces. The technical aspects of Monte Carlo methods are briefly summarized and results for a wide variety of models are described. Included are calculations of internal energies and order parameters for these models as a function of temperature and coverage along with adsorption isotherms and dynamic quantities such as self-diffusion constants. We also show results which are applicable to the interpretation of experimental data on physical systems such as H on Pd(lOO) and H on Fe(110). Other studies which are presented address fundamental theoretical questions about the nature of phase transitions in a two-dimensional geometry such as the existence of Kosterlitz-Thouless transitions or the nature of dynamic critical exponents. Lastly, we briefly mention multilayer adsorption and wetting phenomena and touch on the kinetics of domain growth at surfaces. [Pg.92]

It Is to be remarked that the process described by the Infinite set of kinetic (coagulation) equations can be simulated by Monte-Carlo methods ( ). The Information on the number of molecules of the respective size Is stored In the computer memory and weighting for selection of molecules Is applied given by the number and reactivity of groups In the respective molecule. [Pg.6]

The experimental method and apparatus, and a procedure of the Monte Carlo method that simulates the geminate ion recombination are described, and the time-dependent distribution is elucidated. [Pg.288]

On the other hand, the Monte Carlo method enables us to simultaneously obtain the time-dependent decay curve and the time-dependent distribution function. Therefore we adopted Monte Carlo simulation [18,21,84,85] for the analysis. The geminate ion recombination is also described as follows. [Pg.289]


See other pages where Monte Carlo method described is mentioned: [Pg.672]    [Pg.402]    [Pg.242]    [Pg.244]    [Pg.383]    [Pg.23]    [Pg.83]    [Pg.4810]    [Pg.502]    [Pg.672]    [Pg.402]    [Pg.242]    [Pg.244]    [Pg.383]    [Pg.23]    [Pg.83]    [Pg.4810]    [Pg.502]    [Pg.298]    [Pg.499]    [Pg.430]    [Pg.86]    [Pg.452]    [Pg.230]    [Pg.853]    [Pg.114]    [Pg.100]    [Pg.133]    [Pg.66]    [Pg.81]    [Pg.243]    [Pg.128]    [Pg.384]    [Pg.313]    [Pg.325]    [Pg.19]    [Pg.165]    [Pg.59]    [Pg.55]    [Pg.17]    [Pg.123]    [Pg.50]    [Pg.182]    [Pg.182]    [Pg.77]    [Pg.296]   
See also in sourсe #XX -- [ Pg.139 , Pg.140 , Pg.141 ]




SEARCH



Monte Carlo method

Monte method

© 2024 chempedia.info