Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monolayer spectroscopy

The detailed examination of the behavior of light passing through or reflected by an interface can, in principle, allow the determination of the monolayer thickness, its index of refiraction and absorption coefficient as a function of wavelength. The subjects of ellipsometry, spectroscopy, and x-ray reflection deal with this goal we sketch these techniques here. [Pg.126]

Absorption spectroscopy provides a means to study particular details about a monolayer. Transmission spectroscopy is difficult because the film, which is thin, absorbs little. Gaines [1] describes multiple-pass procedures for overcoming this problem. Reflection spectroscopy in the UV-visible range has been reported for lipid monolayers [150,151] and in the IR range for oleic acid [152]. [Pg.126]

Resonance Raman reflection spectroscopy of monolayers is possible, as illustrated in Fig. IV-14 for cetyl orange [157]. The polarized spectra obtained with an Ar ion laser allowed estimates of orientational changes in the cetyl orange molecules with a. [Pg.127]

The attachment of pyrene or another fluorescent marker to a phospholipid or its addition to an insoluble monolayer facilitates their study via fluorescence spectroscopy [163]. Pyrene is often chosen due to its high quantum yield and spectroscopic sensitivity to the polarity of the local environment. In addition, one of several amphiphilic quenching molecules allows measurement of the pyrene lateral diffusion in the mono-layer via the change in the fluorescence decay due to the bimolecular quenching reaction [164,165]. [Pg.128]

Infrared Spectroscopy. The infrared spectroscopy of adsorbates has been studied for many years, especially for chemisorbed species (see Section XVIII-2C). In the case of physisorption, where the molecule remains intact, one is interested in how the molecular symmetry is altered on adsorption. Perhaps the conceptually simplest case is that of H2 on NaCl(lOO). Being homo-polar, Ha by itself has no allowed vibrational absorption (except for some weak collision-induced transitions) but when adsorbed, the reduced symmetry allows a vibrational spectrum to be observed. Fig. XVII-16 shows the infrared spectrum at 30 K for various degrees of monolayer coverage [96] (the adsorption is Langmuirian with half-coverage at about 10 atm). The bands labeled sf are for transitions of H2 on a smooth face and are from the 7 = 0 and J = 1 rotational states Q /fR) is assigned as a combination band. The bands labeled... [Pg.634]

Freunscht P, Van Duyne R P and Schneider S 1997 Surface-enhanced Raman spectroscopy of trans-stilbene adsorbed on platinum- or self-assembled monolayer-modified silver film over nanosphere surfaces Chem. Phys. Lett. 281 372-8... [Pg.1228]

The SHG/SFG technique is not restricted to interface spectroscopy of the delocalized electronic states of solids. It is also a powerful tool for spectroscopy of electronic transitions in molecules. Figure Bl.5.13 presents such an example for a monolayer of the R-enantiomer of the molecule 2,2 -dihydroxyl-l,l -binaphthyl, (R)-BN, at the air/water interface [ ]. The spectra reveal two-photon resonance features near wavelengths of 332 and 340 mu that are assigned to the two lowest exciton-split transitions in the naphtli-2-ol... [Pg.1293]

Monolayers of alkanetliiols adsorbed on gold, prepared by immersing tire substrate into solution, have been characterized by a large number of different surface analytical teclmiques. The lateral order in such layers has been investigated using electron [1431, helium [144, 1451 and x-ray [146, 1471 diffraction, as well as witli scanning probe microscopies [122, 1481. Infonnation about tire orientation of tire alkyl chains has been obtained by ellipsometry [149], infrared (IR) spectroscopy [150, 151] and NEXAFS [152]. [Pg.2624]

Porter M D, Bright T B, Allara D L and Chidsey C E D 1987 Spontaneously organized molecular assemblies. 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry J. Am. Chem. Soc. 109 3559-68... [Pg.2636]

High quahty SAMs of alkyltrichlorosilane derivatives are not simple to produce, mainly because of the need to carefully control the amount of water in solution (126,143,144). Whereas incomplete monolayers are formed in the absence of water (127,128), excess water results in facile polymerization in solution and polysiloxane deposition of the surface (133). Extraction of surface moisture, followed by OTS hydrolysis and subsequent surface adsorption, may be the mechanism of SAM formation (145). A moisture quantity of 0.15 mg/100 mL solvent has been suggested as the optimum condition for the formation of closely packed monolayers. X-ray photoelectron spectroscopy (xps) studies confirm the complete surface reaction of the —SiCl groups, upon the formation of a complete SAM (146). Infrared spectroscopy has been used to provide direct evidence for the hiU hydrolysis of methylchlorosilanes to methylsdanoles at the soHd/gas interface, by surface water on a hydrated siUca (147). [Pg.537]

Intensity enhancement takes place on rough silver surfaces. Under such conditions, Raman scattering can be measured from monolayers of molecular substances adsorbed on the silver (pyridine was the original test case), a technique known as surface-enhanced Raman spectroscopy. More recendy it has been found that sur-fiice enhancement also occurs when a thin layer of silver is sputtered onto a solid sample and the Raman scattering is observed through the silver. [Pg.434]


See other pages where Monolayer spectroscopy is mentioned: [Pg.64]    [Pg.62]    [Pg.64]    [Pg.62]    [Pg.396]    [Pg.588]    [Pg.1264]    [Pg.1325]    [Pg.1781]    [Pg.1828]    [Pg.191]    [Pg.286]    [Pg.356]    [Pg.356]    [Pg.314]    [Pg.537]    [Pg.538]    [Pg.540]    [Pg.540]    [Pg.545]    [Pg.2]    [Pg.117]    [Pg.279]    [Pg.372]    [Pg.391]    [Pg.414]    [Pg.415]    [Pg.423]    [Pg.528]    [Pg.555]   
See also in sourсe #XX -- [ Pg.127 ]

See also in sourсe #XX -- [ Pg.37 , Pg.38 , Pg.39 , Pg.40 , Pg.41 , Pg.42 , Pg.43 , Pg.44 , Pg.45 , Pg.46 , Pg.47 , Pg.48 ]

See also in sourсe #XX -- [ Pg.547 ]




SEARCH



Electron energy loss spectroscopy monolayers

Electron spectroscopy, monolayer dispersion

Infrared Reflection Absorption Spectroscopy of Monolayers at the Air-Water Interface

Monolayer dispersion Raman spectroscopy

Monolayer dispersion spectroscopy

Raman reflection spectroscopy monolayers

Spectroscopy of monolayers

Spectroscopy organic monolayer studies with

© 2024 chempedia.info