Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monocycles

The most important menthadiene, an optically active monocyclic terpene found in chenopo-dium oil. Used in the manufacture of p-cymene. [Pg.253]

For methanol clusters [36], it was found that the dimer is linear, while clusters of 3 and 4 molecules exist as monocyclic ring structures. There also is evidence that there are two cyclic ring trimer confomiers in the molecular beam. [Pg.1170]

All of these effects can be accounted for by extensions of an additivity scheme, when special increments are attributed to monocyclic structures and the combination of two ring systems having one, two, or three atoms in common [23]. Combination of a table containing values for these ring fragments with an algorithm for the determination of the smallest set of smallest rings (SSSR) [24] (see also Section 2.5.1) allows such a procedure to be performed automatically. [Pg.326]

Nitration and aromatic reactivity C. The nitration of monocyclic compounds... [Pg.163]

If an open-chain organic molecule contains an electron acceptor and an electron donor site, two carbon atoms may be combined intramolecularly. This corresponds to the synthesis of a monocyclic compound. [Pg.3]

The achiral triene chain of (a//-rrans-)-3-demethyl-famesic ester as well as its (6-cis-)-isoiner cyclize in the presence of acids to give the decalol derivative with four chirai centres whose relative configuration is well defined (P.A. Stadler, 1957 A. Escherunoser, 1959 W.S. Johnson, 1968, 1976). A monocyclic diene is formed as an intermediate (G. Stork, 1955). With more complicated 1,5-polyenes, such as squalene, oily mixtures of various cycliz-ation products are obtained. The 18,19-glycol of squalene 2,3-oxide, however, cyclized in modest yield with picric acid catalysis to give a complex tetracyclic natural product with nine chiral centres. Picric acid acts as a protic acid of medium strength whose conjugated base is non-nucleophilic. Such acids activate oxygen functions selectively (K.B. Sharpless, 1970). [Pg.91]

The early Escherunoser-Stork results indicated, that stereoselective cyclizations may be achieved, if monocyclic olefins with 1,5-polyene side chains are used as substrates in acid treatment. This assumption has now been justified by many syntheses of polycyclic systems. A typical example synthesis is given with the last reaction. The cyclization of a trideca-3,7-dien-11-ynyl cyclopentenol leads in 70% yield to a 17-acetyl A-norsteroid with correct stereochemistry at all ring junctions. Ozonolysis of ring A and aldol condensation gave dl-progesterone (M.B. Gravestock, 1978 see p. 279f.). [Pg.91]

The two-bond disconnection (re/ro-cycloaddition) approach also often works very well if the target molecule contains three-, four-, or five-membered rings (see section 1.13 and 2.5). The following tricyclic aziridine can be transformed by one step into a monocyclic amine (W. Nagata, 1968). In synthesis one would have to convert the amine into a nitrene, which-would add spontcaneously to a C—C double bond in the vicinity. [Pg.212]

Recent syntheses of steroids apply efficient strategies in which open-chain or monocyclic educts with appropiate side-chains are stereoselectively cyclized in one step to a tri- or tetracyclic steroid precursor. These procedures mimic the biochemical synthesis scheme where acyclic, achiral squalene is first oxidized to a 2,3-epoxide containing one chiral carbon atom and then enzymatically cyclized to lanostetol with no less than seven asymmetric centres (W.S. Johnson, 1%8, 1976 E.E. van Tamden, 1968). [Pg.279]

Proton-catalyzed olefin cyclizations of open-chain educts may give tri- or tetracyclic products but low yields are typical (E.E. van Tamelen, 1968, 1977 see p. 91). More useful are cyclizations of monocyclic educts with appropriate side-chains. The chiral centre to which the chain is attached may direct the steric course of the cyclization, and several asymmetric centres may be formed stereoselectively since the cyclizations usually lead to traas-fused rings. [Pg.279]

In the first chapter, devoted to thiazole itself, specific emphasis has been given to the structure and mechanistic aspects of the reactivity of the molecule most of the theoretical methods and physical techniques available to date have been applied in the study of thiazole and its derivatives, and the results are discussed in detail The chapter devoted to methods of synthesis is especially detailed and traces the way for the preparation of any monocyclic thiazole derivative. Three chapters concern the non-tautomeric functional derivatives, and two are devoted to amino-, hydroxy- and mercaptothiazoles these chapters constitute the core of the book. All discussion of chemical properties is complemented by tables in which all the known derivatives are inventoried and characterized by their usual physical properties. This information should be of particular value to organic chemists in identifying natural or Synthetic thiazoles. Two brief chapters concern mesoionic thiazoles and selenazoles. Finally, an important chapter is devoted to cyanine dyes derived from thiazolium salts, completing some classical reviews on the subject and discussing recent developments in the studies of the reaction mechanisms involved in their synthesis. [Pg.599]

This volume is intended to present a comprehensive description of the chemistry of thiazole and its monocyclic derivatives, based on the chemical literature up to December, 1976. It is not concerned with polycyclic thiazoles, such as benzo- or naphthothiazole, nor with hydrogenated derivatives, such as thiazolines or thiazolidines later volumes in this series are devoted to these derivatives. The chemistry of thiamine has also been excluded from the present volume because of the enormous amount of literature corresponding to the subject and is developed in another volume. On the other hand, a discussion of selenazole and its monocyclic derivatives has been included, and particular emphasis has been given to the cyanine dyes derived from thiazolium salts. [Pg.1]

Chapters III to VII discuss the general properties of thiazoles having hydrocarbon and functional substituents, respectively. A special chapter (Chapter VIII) is devoted to mcso-ionic thiazoles, and Chapter IX describes the thiazolium salts and their numerous cyanine dyes derivatives. The last chapter concerns the monocyclic selenazoles. [Pg.1]

One of molecular orbital theories early successes came m 1931 when Erich Huckel dis covered an interesting pattern m the tt orbital energy levels of benzene cyclobutadiene and cyclooctatetraene By limiting his analysis to monocyclic conjugated polyenes and restricting the structures to planar geometries Huckel found that whether a hydrocarbon of this type was aromatic depended on its number of tt electrons He set forth what we now call Huckel s rule... [Pg.451]

Among planar monocyclic fully conjugated polyenes only those possessing (4n + 2) TT electrons where n is a whole number will have special stability that be aromatic... [Pg.451]

The An + 2) tt electron standard follows from the pattern of orbital energies m monocyclic completely conjugated polyenes The tt energy levels were shown for ben zene earlier m Figure 114 and are repeated m Figure Figure 11 13a and 11 13c... [Pg.452]


See other pages where Monocycles is mentioned: [Pg.84]    [Pg.253]    [Pg.253]    [Pg.303]    [Pg.303]    [Pg.382]    [Pg.388]    [Pg.388]    [Pg.388]    [Pg.388]    [Pg.388]    [Pg.168]    [Pg.172]    [Pg.174]    [Pg.176]    [Pg.180]    [Pg.182]    [Pg.184]    [Pg.186]    [Pg.188]    [Pg.190]    [Pg.192]    [Pg.194]    [Pg.92]    [Pg.172]    [Pg.189]    [Pg.220]    [Pg.599]    [Pg.415]    [Pg.2]    [Pg.623]   
See also in sourсe #XX -- [ Pg.76 ]

See also in sourсe #XX -- [ Pg.57 , Pg.58 , Pg.80 ]




SEARCH



Monocyclic

© 2024 chempedia.info