Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum catalysts, hydrodesulfurization activity

Minaev, V. Z. Zaidman, N. M. Spirina, G. A., et al., Effect of Pore Structure of Alumina-Cobalt-Molybdenum Catalyst on Activity and Stability in Hydrodesulfurization of Heavy Feedstocks. Chemistry and Technology of Fuels and Oils, 1975. 11(6) pp. 436-39. [Pg.57]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

Catalysts used for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of heavy oil fractions are largely based on alumina-supported molybdenum or tungsten to which cobalt or nickel is added as a promoter [11]. As the catalysts are active in the sulfided state, activation is carried out by treating the oxidic catalyst precursor in a mixture of H2S and H2 (or by exposing the catalyst to the sulfur-containing feed). The function of hydrogen is to prevent the decomposition of the relatively unstable H2S to elemental sulfur, which would otherwise accumulate on the surface of the... [Pg.34]

Another SIMS study on model systems concerns molybdenum sulfide catalysts. The removal of sulfur from heavy oil fractions is carried out over molybdenum catalysts promoted with cobalt or nickel, in processes called hydrodesulfurization (HDS) [17]. Catalysts are prepared in the oxidic state but have to be sulfided in a mixture of H2S and H2 in order to be active. SIMS sensitively reveals the conversion of Mo03 into MoSi, in model systems of MoCf supported on a thin layer of Si02 [21]. [Pg.107]

The sulfidation mechanisms of cobalt- or nickel-promoted molybdenum catalysts are not yet known in the same detail as that of M0O3, but are not expected to be much different, as TPS patterns of Co-Mo/A1203 and Mo/Al203 are rather similar [56J. However, interactions of the promoter elements with the alumina support play an important role in the ease with which Ni and Co convert to the sulfidic state. We come back to this after we have discussed the active phase for the hydrodesulfurization reaction in more detail. [Pg.271]

T-310 About 10-12% nickel as the oxide on an activated alumina T-606 Specially compounded refractory oxide support G-39 A cobalt-molybdenum catalyst, used for simultaneous hydrodesulfurization of sulfur compounds and hydrogenation of olefins... [Pg.598]

Hilsenbeck, S. J. McCarley, R. E. Goldman, A. I. et al. Hydrodesulfurization Activity and EXAFS Characterization of Novel Ternary Tin and Lanthanum Molybdenum Sulfide Catalysts. Chem. Mater. 1998, 10, 125-134. [Pg.152]

Song, S. K. Wang, Y. Ihm, S. K. Effect of lanthanum addition on the thiophene hydrodesulfurization activity over Al-MCM-41 supported molybdenum catalysts. [Pg.154]

A cationic molybdenum sulfide cluster [Mo3S4(H20)9] " with incomplete cubane-type structure and a cationic nickel-molybdenum mixed sulfide cluster [Mo3NiS4Cl(H20)9p " with complete cubane-type structure were introduced into zeolites NaY, HUSY and KL by ion exchange. Stoichiometry of the ion exchange was well established by elemental analyses. The UV-visible spectra and EXAFS analysis data exhibited that the structure of the molybdenum cluster remained virtually intact after ion exchange. MoNi/NaY catalyst prepared using the molybdenum-nickel sulfide cluster was found to be active and selective for benzothiophene hydrodesulfurization. [Pg.107]

Molybdena catalysts have been with us for quite a long time. The term molybdena is used here to denote a composite catalyst consisting of molybdenum oxide supported on an activated support, commonly alumina. Early it was found that certain transition metals, notably cobalt and nickel, promote the molybdena catalyst for hydrodesulfurization (HDS) reactions. [Pg.266]

Molybdenum oxide - alumina systems have been studied in detail (4-8). Several authors have pointed out that a molybdate surface layer is formed, due to an interaction between molybdenum oxide and the alumina support (9-11). Richardson (12) studied the structural form of cobalt in several oxidic cobalt-molybdenum-alumina catalysts. The presence of an active cobalt-molybdate complex was concluded from magnetic susceptibility measurements. Moreover cobalt aluminate and cobalt oxide were found. Only the active cobalt molybdate complex would contribute to the activity and be characterized by octahedrally coordinated cobalt. Lipsch and Schuit (10) studied a commercial oxidic hydrodesulfurization catalyst, containing 12 wt% M0O3 and 4 wt% CoO. They concluded that a cobalt aluminate phase was present and could not find indications for an active cobalt molybdate complex. Recent magnetic susceptibility studies of the same type of catalyst (13) confirmed the conclusion of Lipsch and Schuit. [Pg.155]

The promoting action of cobalt on the activity for hydrodesulfurization has been shown already in the pioneering work of Byrns, Bradley and Lee (14). This promoting action might be linked with the sulfiding step, since the actual catalyst is the sulfided form of cobalt- or nickel-molybdenum-alumina. Voorhoeve and Stuiver (15) and Farragher and Cossee (16) demonstrated the promoting action for the unsupported Ni-WS2 system. Their intercalation model was based on these experiments. [Pg.155]

A Comparison of the Hydrodesulfurization and Hydrodenitrogenation Activities of Monolith Alumina Impregnated with Cobalt and Molybdenum and a Commercial Catalyst... [Pg.210]

In this paper factors controlling the catalytic activity in the hydrodesulfurization reaction (HDS) are discussed. The SiOa-supported phosphormolybdenum heteropolyacid (HPMo) is used as a model catalyst. Two types of the catalyst deactivation have been shown. The reversible deactivation effect is related with changes in the molybdenum valence, its 0- and 0,S-surrounding and adsorbtion of the S-containing reaction products. The HDS activity is irreversibly changed when the transformation of the catalyst phase composition is carried out ... [Pg.620]


See other pages where Molybdenum catalysts, hydrodesulfurization activity is mentioned: [Pg.380]    [Pg.155]    [Pg.181]    [Pg.202]    [Pg.203]    [Pg.21]    [Pg.349]    [Pg.43]    [Pg.69]    [Pg.1]    [Pg.1293]    [Pg.1294]    [Pg.580]    [Pg.431]    [Pg.372]    [Pg.306]    [Pg.113]    [Pg.477]    [Pg.115]    [Pg.357]    [Pg.2]    [Pg.107]    [Pg.45]    [Pg.278]    [Pg.180]    [Pg.201]    [Pg.454]    [Pg.263]    [Pg.400]    [Pg.16]    [Pg.178]    [Pg.242]    [Pg.318]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Hydrodesulfuration

Hydrodesulfurization

Hydrodesulfurization activities

Hydrodesulfurization catalysts

Hydrodesulfurization molybdenum catalysts

Hydrodesulfurizer

Molybdenum catalysts

Molybdenum hydrodesulfurization

© 2024 chempedia.info