Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characterization EXAFS

Rc-Pt [Re2Pl(CO)i2] 197 K-AI2O3 Catalyst characterization (IR. XPS. TPR, chemisorption) Catalyst characterization (EXAFS. chemisorption) and methylcyclohe.xane dehydrogenation 203 204... [Pg.114]

The magnetic and electronic properties of the D. gigas Fdll [3Fe-4S] center were revealed by different and complementary spectroscopic techniques EPR 89), Mossbauer 90, 91), resonance Raman (RR) 92), magnetic circular dichroism MCD) 93), EXAFS 94), saturation magnetization (95), electrochemistry 96), and NMR (97, 98). The [4Fe-4S] center is also well characterized and surprising information has been obtained in relation to cluster interconversions and noncysteinyl coordination, as illustrated for D. gigas Fdl and D. africanus Fdlll, as well as the possibility of generating unusual reduced states. [Pg.373]

Especially for this latter class of hydrogenases, great effort has been devoted to the purification and the characterization of the metal centers involved, using biochemical, genetic, spectroscopic (IR, EPR, Mossbauer, MCD, EXAFS, and mass spectrometry), and crystallographic techniques 152, 165, 166). [Pg.389]

A MgO-supported W—Pt catalyst has been prepared from IWsPttCOIotNCPh) (i -C5H5)2l (Fig. 70), reduced under a Hs stream at 400 C, and characterized by IR, EXAFS, TEM and chemisorption of Hs, CO, and O2. Activity in toluene hydrogenation at 1 atm and 60 C was more than an order of magnitude less for the bimetallic cluster-derived catalyst, than for a catalyst prepared from the two monometallic precursors. [Pg.113]

MgO-supported model Mo—Pd catalysts have been prepared from the bimetallic cluster [Mo2Pd2 /z3-CO)2(/r-CO)4(PPh3)2() -C2H )2 (Fig. 70) and monometallic precursors. Each supported sample was treated in H2 at various temperatures to form metallic palladium, and characterized by chemisorption of H2, CO, and O2, transmission electron microscopy, TPD of adsorbed CO, and EXAFS. The data showed that the presence of molybdenum in the bimetallic precursor helped to maintain the palladium in a highly dispersed form. In contrast, the sample prepared from the monometallie precursors was characterized by larger palladium particles and by weaker Mo—Pd interactions. ... [Pg.116]

EXAFS characterization of supported PtRu/MgO prepared from a molecular precursor and organometallic mixture... [Pg.209]

The goal of this work was to prepare and characterize PtRu/MgO catalysts from cluster A which contained Pt-Ru bonds and compare with that prepared from a mixed solution of Pt(acac)2 and Ru(acac)3. The characterization methods included IR and EXAFS spectroscopy. Ethylene hydrogenation was used to test the catalytic activity of both PtRu/MgO catalysts. [Pg.209]

The second approach is to study real catalysts with in situ techniques such as infrared and Mossbauer spectroscopy, EXAFS and XRD, under reaction conditions, or, as is more often done, under a controlled environment after quenching of the reaction. The in situ techniques, however, are not sufficiently surface specific to yield the desired atom-by-atom characterization of the surface. At best they determine the composition of the particles. [Pg.166]

Owing largely to research over the last twenty years, the sulfided C0-M0/AI2O3 system is one of the best-characterized industrial catalysts [H. Topsoe, B.S. Clausen and F.E. Massoth, Hydrotreating Catalysis (1996), Springer-Verlag, Berlin]. A combination of methods, such as Mbssbauer spectroscopy, EXAFS, XPS, and infrared spectroscopy, has led to a picture in which the active site of such a catalyst is known in almost atomic detail. [Pg.355]

X-ray absorption spectroscopy combining x-ray absorption near edge fine structure (XANES) and extended x-ray absorption fine structure (EXAFS) was used to extensively characterize Pt on Cabosll catalysts. XANES Is the result of electron transitions to bound states of the absorbing atom and thereby maps the symmetry - selected empty manifold of electron states. It Is sensitive to the electronic configuration of the absorbing atom. When the photoelectron has sufficient kinetic energy to be ejected from the atom It can be backscattered by neighboring atoms. The quantum Interference of the Initial... [Pg.280]

If a vacant site is occupied by another Nb atom, such that it is a dimer, new catalysts may be designed. The Nb dimer catalyst(2) was prepared by reaction of [Nb(ri -C5H5)H-p-(T, Ti -CsH4)]2 with a Si02 at 313 K, followed by treatment with 02 at 773 K. A proposed structure(2) was characterized by EXAFS, x-ray absorption near-edge structure(XANES), FT-IR, UV-vis, and XPS, which shows Nb-Nb (coordination number 0.9) and Nb-Si(2.3)... [Pg.24]

In the present study, we synthesized in zeolite cavities Co-Mo binary sulfide clusters by using Co and Mo carbonyls and characterized the clusters by extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and high resolution electron microscopy (HREM). The mechanism of catalytic synergy generation in HDS is discussed. [Pg.503]

The quantification of the extra-framework titanium species in titanium silicalites of MFI structure, TS-1, was performed using either XANES at the Ti K-edge or XPS Ti (2p) photolines. In addition, two different framework sites, [Ti(OH)(OSi)3] and [Ti(OSi)4], were characterized in dehydrated samples using Diffuse Reflectance UV-visible, multiple scattering analysis of EXAFS, H and Si NMR spectroscopies. [Pg.611]

Nowadays there is a general consensus that the Ti(IV) atoms are incorporated as isolated centers into the framework and are substituting Si atoms in the tetrahedral positions forming [Ti04] units. The model of isomorphous substitution has been put forward on the basis of several independent characterization techniques, namely X-ray [21-23] or neutron [24-26] diffraction studies, IR (Raman) [52-57], UV-Vis [38,54,58], EXAFS, and XANES [52, 58-62] spectroscopies. [Pg.42]

Since we are interested in evaluating structure-activity relationships (see Sect. 2.2), it is important to combine several analytical methods to allow a characterization at a molecular level for example, elemental analysis, IR, and advanced NMR spectroscopies, EXAFS and chemical reactivity studies. [Pg.169]

Intermediates were also observed in the synthesis of a neutral cluster, Ir4(CO)i2, from Ir(CO)2(acac) in the cages of zeohte NaY these were characterized by IR and extended X-ray absorption fine structure (EXAFS) spectroscopies, the latter being a technique ideally suited to investigation of small, highly dispersed species present in small amoimts in sohds. The spectra indicated dimeric intermediates, possibly Ir2(CO)8 [ 16], when the reaction was carried out in the near absence of water in the zeohte in contrast, the reaction in the dehydrated zeolite was faster, and no evidence of intermediates was observed [16]. [Pg.215]

The longer metal-oxygen distances of about 2.6 A observed by EXAFS spectroscopy for these and related supported metal clusters suggest weak interactions between the metal and surface oxygen atoms these EXAFS contributions are not determined with as much confidence as those characterized by the shorter distances, and the interactions are not well understood. [Pg.220]

Fig. 3 Ir4 cluster supported at the six-ring of zeolite NaX as represented by density functional theory samples were characterized by Extended X-ray absorption fine structure (EXAFS) spectroscopy and other techniques [32]... Fig. 3 Ir4 cluster supported at the six-ring of zeolite NaX as represented by density functional theory samples were characterized by Extended X-ray absorption fine structure (EXAFS) spectroscopy and other techniques [32]...

See other pages where Characterization EXAFS is mentioned: [Pg.114]    [Pg.114]    [Pg.114]    [Pg.266]    [Pg.482]    [Pg.114]    [Pg.114]    [Pg.114]    [Pg.266]    [Pg.482]    [Pg.1791]    [Pg.2907]    [Pg.211]    [Pg.225]    [Pg.45]    [Pg.172]    [Pg.58]    [Pg.169]    [Pg.116]    [Pg.174]    [Pg.209]    [Pg.315]    [Pg.281]    [Pg.578]    [Pg.578]    [Pg.24]    [Pg.25]    [Pg.27]    [Pg.43]    [Pg.48]    [Pg.60]    [Pg.109]    [Pg.190]    [Pg.216]    [Pg.219]    [Pg.220]   
See also in sourсe #XX -- [ Pg.31 , Pg.277 , Pg.278 , Pg.287 , Pg.295 ]




SEARCH



EXAFS

© 2024 chempedia.info