Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecules reality

Although a diatomic molecule can produce only one vibration, this number increases with the number of atoms making up the molecule. For a molecule of N atoms, 3N-6 vibrations are possible. That corresponds to 3N degrees of freedom from which are subtracted 3 translational movements and 3 rotational movements for the overall molecule for which the energy is not quantified and corresponds to thermal energy. In reality, this number is most often reduced because of symmetry. Additionally, for a vibration to be active in the infrared, it must be accompanied by a variation in the molecule s dipole moment. [Pg.57]

To avoid these problems, refiners commonly use additives called detergents" (Hall et al., 1976), (Bert et al., 1983). These are in reality surfactants made from molecules having hydrocarbon chains long enough to ensure their solubility in the fuel and a polar group that enables them to be absorbed on the walls and prevent deposits from sticking. The most effective chemical structures are succinimides, imides, and fatty acid amines. The required dosages are between 500 and 1000 ppm of active material. [Pg.243]

The corresponding fiinctions i-, Xj etc. then define what are known as the normal coordinates of vibration, and the Hamiltonian can be written in tenns of these in precisely the fonn given by equation (AT 1.69). witli the caveat that each tenn refers not to the coordinates of a single particle, but rather to independent coordinates that involve the collective motion of many particles. An additional distinction is that treatment of the vibrational problem does not involve the complications of antisymmetry associated with identical fennions and the Pauli exclusion prmciple. Products of the nonnal coordinate fiinctions neveitlieless describe all vibrational states of the molecule (both ground and excited) in very much the same way that the product states of single-electron fiinctions describe the electronic states, although it must be emphasized that one model is based on independent motion and the other on collective motion, which are qualitatively very different. Neither model faithfully represents reality, but each serves as an extremely usefiil conceptual model and a basis for more accurate calculations. [Pg.35]

In our simple model, the expression in A2.4.135 corresponds to the activation energy for a redox process in which only the interaction between the central ion and the ligands in the primary solvation shell is considered, and this only in the fonn of the totally synnnetrical vibration. In reality, the rate of the electron transfer reaction is also infiuenced by the motion of molecules in the outer solvation shell, as well as by other... [Pg.605]

Figure A3.9.9. Dissociation probability versus incident energy for D2 molecules incident on a Cu(l 11) surface for the initial quantum states indicated (u indicates the mitial vibrational state and J the initial rotational state) [100], For clarity, the saturation values have been scaled to the same value irrespective of the initial state, although in reality die saturation value is higher for the u = 1 state. Figure A3.9.9. Dissociation probability versus incident energy for D2 molecules incident on a Cu(l 11) surface for the initial quantum states indicated (u indicates the mitial vibrational state and J the initial rotational state) [100], For clarity, the saturation values have been scaled to the same value irrespective of the initial state, although in reality die saturation value is higher for the u = 1 state.
Isolated Linear Molecule Figure 6 shows the error in total energy for an isolated linear molecule H-(-C=C-)5-H. It is obvious that for the same level of accuracy, the time step in the SISM can be ten times or more larger as in the LFV. Furthermore, the LFV method is stable for only very short time steps, up to 5 fs, while the SISM is stable even for a time step up to 200 fs. However, such large time steps no longer represent physical reality and arc a particular property identified with linear molecules without bending or torsional intramolecular interactions. [Pg.345]

This discussion may well leave one wondering what role reality plays in computation chemistry. Only some things are known exactly. For example, the quantum mechanical description of the hydrogen atom matches the observed spectrum as accurately as any experiment ever done. If an approximation is used, one must ask how accurate an answer should be. Computations of the energetics of molecules and reactions often attempt to attain what is called chemical accuracy, meaning an error of less than about 1 kcal/mol. This is suf-hcient to describe van der Waals interactions, the weakest interaction considered to affect most chemistry. Most chemists have no use for answers more accurate than this. [Pg.3]

The mathematical definition of the Born-Oppenheimer approximation implies following adiabatic surfaces. However, software algorithms using this approximation do not necessarily do so. The approximation does not reflect physical reality when the molecule undergoes nonradiative transitions or two... [Pg.174]

Normal Mode Analysis of Biological Molecules V. NORMAL MODE ANALYSIS AND REALITY... [Pg.163]

The early years, when the nature of polymers was in vigorous dispute and the reality of long-chain molecules finally came to be accepted, are treated in Chapter 2, Section 2.1.3. For the convenience of the reader 1 set out the sequence of early events here in summary form. [Pg.307]

Energy calculations and geometry optimizations ignore the vibrations in molecular systems. In this way, these computations use an idealized view of nuclear position. In reality, the nuclei in molecules are constantly in motion. In equilibrium states, these vibrations are regular and predictable, and molecules can be identified by their characteristic spectra. [Pg.61]

While orbitals may be useful for qualitative understanding of some molecules, it is important to remember that they are merely mathematical functions that represent solutions to the Hartree-Fock equations for a given molecule. Other orbitals exist which will produce the same energy and properties and which may look quite different. There is ultimately no physical reality which can be associated with these images. In short, individual orbitals are mathematical not physical constructs. [Pg.113]

Both space-filling and electron density models yield similar molecular volumes, and both show the obvious differences in overall size. Because the electron density surfaces provide no discernible boundaries between atoms (and employ no colors to highlight these boundaries), the surfaces may appear to be less informative than space-filling models in helping to decide to what extent a particular atom is exposed . This weakness raises an important point, however. Electrons are associated with a molecule as a whole and not with individual atoms. The space-filling representation of a molecule in terms of discernible atoms does not reflect reality, but rather is an artifact of the model. The electron density surface is more accurate in that it shows a single electron cloud for the entire molecule. [Pg.25]

Reality Check Note that although molecular formulas give the composition of the molecule, they reveal nothing about the way the atoms fit together. In that sense they are less useful than structural formulas. [Pg.35]

Reality Check In acetic acid, the H atom bonded to oxygen in one molecule forms a hydrogen bond with an oxygen in an adjacent molecule. The same situation applies in hydrazine if you substitute nitrogen for oxygen. [Pg.239]

There is a restriction on this simple model for the C0-N02 reaction. According to the kinetic theory of gases, for a reaction mixture at 700 K and concentrations of 0.10 M, every CO molecule should collide with about 109 N02 molecules in one second. If every collision were effective, the reaction should be over in a fraction of a second. In reality, this does not happen under these conditions, the half-life is about 10 s. This implies that not every CO-N02 collision leads to reaction. [Pg.298]

Reality Check Notice that moving from left to right, one en replaces two OH- ions. This makes sense an en molecule has two lone pairs that can bond to the metal OH-has only one. [Pg.412]

Surrogate screening (utilizing similar but not exact therapeutically relevant targets) can lead to dissimulation in screening data, especially for allosteric molecules. For this reason, frequent reality testing with a therapeutically relevant assay is essential. [Pg.172]

Gay-Lussac measured how the temperature of a gas affects its pressure, volume, and density. The Italian scientist Amedeo Avogadro made a further contribution that established the relation between the volume and the amount of molecules in the sample and thereby helped to establish belief in the reality of atoms. [Pg.267]

It is often asked whether or not the constituent structures of a resonating system, such as the Kekul4 structures for the benzene molecule, are to be considered as having reality. There is one sense in which this question may be answered in the affirmative but the answer is definitely negative if the usual chemical significance is attributed to the structures. A substance showing resonance between two or more valence-bond structures does not contain molecules with the configurations and properties usually associated with these structures. The constituent structures of the resonance hybrid do not have reality in this sense. [Pg.251]

In reality, many other chemical and photochemical processes take place leading to a sort of steady-state concentration of O3 which is a sensitive function of height. To be accurate, it is necessary to include the reactions of nitrogen oxides, chlorine- and hydrogen-containing free radicals (molecules containing an unpaired electron). However, occurrence of a layer due to the altitude dependence of the photochemical processes is of fundamental geochemical importance and can be demonstrated simply by the approach of Chapman (1930). [Pg.137]


See other pages where Molecules reality is mentioned: [Pg.593]    [Pg.593]    [Pg.1159]    [Pg.1693]    [Pg.2815]    [Pg.343]    [Pg.345]    [Pg.104]    [Pg.377]    [Pg.577]    [Pg.26]    [Pg.474]    [Pg.36]    [Pg.206]    [Pg.25]    [Pg.162]    [Pg.120]    [Pg.42]    [Pg.65]    [Pg.142]    [Pg.202]    [Pg.1072]    [Pg.706]    [Pg.25]    [Pg.32]    [Pg.219]    [Pg.86]    [Pg.302]    [Pg.74]    [Pg.104]    [Pg.35]   


SEARCH



Reality

© 2024 chempedia.info