Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular transport due

Strong Electrical Fields Molecular Transport Due to Electroporation... [Pg.455]

Figure 13 displays the self-diffusivities of n-hexane and 2-methylpentane in silicalite-1 and H-ZSM-5 as a function of the ratio of the hydrocarbons. The self-diffusivities of both hexanes linearly decrease with increasing gas-phase fraction of the branched hexane in the gas phase for the non-acidic and acidic zeolite. In H-ZSM-5, the mobility of alkanes is approximately two times slower than in silicalite-1. Obviously, the presence of acid sites strongly affects the molecular transport due to stronger interactions with the n-hexane molecules. A similar effect of Bronsted sites on the single component diffusion of aromatics was observed in MFI zeolites with different concentration of acid sites [63-65]. The frequency response (FR) technique provided similar results... [Pg.308]

The diffusion is a kinetic process of molecular transport due to a gradient of molecular concentration c. The coefficient of diffusion D relates the flux of particles... [Pg.174]

The physics and modeling of turbulent flows are affected by combustion through the production of density variations, buoyancy effects, dilation due to heat release, molecular transport, and instabiUty (1,2,3,5,8). Consequently, the conservation equations need to be modified to take these effects into account. This modification is achieved by the use of statistical quantities in the conservation equations. For example, because of the variations and fluctuations in the density that occur in turbulent combustion flows, density weighted mean values, or Favre mean values, are used for velocity components, mass fractions, enthalpy, and temperature. The turbulent diffusion flame can also be treated in terms of a probabiUty distribution function (pdf), the shape of which is assumed to be known a priori (1). [Pg.520]

At a more molecular level, the influences of the composition of the membrane domains, which are characteristic of a polarized cell, on diffusion are not specifically defined. These compositional effects include the differential distribution of molecular charges in the membrane domains and between the leaflets of the membrane lipid bilayer (Fig. 3). The membrane domains often have physical differences in surface area, especially in the surface area that is accessible for participation in transport. For example, the surface area in some cells is increased by the presence of membrane folds such as microvilli (see Figs. 2 and 6). The membrane domains also have differences in metabolic selectivity and capacity as well as in active transport due to the asymmetrical distribution of receptors and transporters. [Pg.244]

The left-hand sides of Eqs. (25)-(29) have the same form as Eq. (5) and represent accumulation and convection. The terms on the right-hand side can be divided into spatial transport due to diffusion and source terms. The diffusion terms have a molecular component (i.e., /i and D), and turbulent components. We should note here that the turbulence models used in Eqs. (26) and (27) do not contain corrections for low Reynolds numbers and, hence, the molecular-diffusion components will be negligible when the model is applied to high-Reynolds-number flows. The turbulent viscosity is defined using a closure such as... [Pg.247]

The first two terms on the right-hand side of this expression are the spatial transport terms. For homogeneous turbulence, these terms will be exactly zero. For inhomogeneous turbulence, the molecular transport term vV2e will be negligible (order Re,1). Spatial transport will thus be due to the unclosed velocity fluctuation term (u, e), and the unclosed... [Pg.71]

The last term on the right-hand side is unclosed and represents scalar transport due to velocity fluctuations. The turbulent scalar flux ( , varies on length scales on the order of the turbulence integral scales Lu, and hence is independent of molecular properties (i.e., v and T).17 In a CFD calculation, this implies that the grid size needed to resolve (4.70) must be proportional to the integral scale, and not the Batchelor scale as required in DNS. In this section, we look at two types of models for the scalar flux. The first is an extension of turbulent-viscosity-based models to describe the scalar field, while the second is a second-order model that is used in conjunction with Reynolds-stress models. [Pg.140]

The respiratory chain is one of the pathways involved in oxidative phosphorylation (see p. 122). It catalyzes the steps by which electrons are transported from NADH+H or reduced ubiquinone (QH2) to molecular oxygen. Due to the wide difference between the redox potentials of the donor (NADH+H or QH2) and the acceptor (O2), this reaction is strongly exergonic (see p. 18). Most of the energy released is used to establish a proton gradient across the inner mitochondrial membrane (see p. 126), which is then ultimately used to synthesize ATP with the help of ATP synthase. [Pg.140]

Pliquett, U. 1999. Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv Drug Deliv Rev 35 41. [Pg.314]

The transport properties of a near-critical system contain an enhancement or a reduction due to critical fluctuations in addition to the contributions of molecular transport processes which are strictly a function of the thermodynamic state. Therefore, the transport coefficients in the critical region are usually... [Pg.3]

Major routes of entry of chemicals into surface waters include precipitation, drift, runoff, industrial and sewage outfalls, groundwater, and human disposal. Once in the surface waters, the chemicals may be transported via advection (bulk movement by currents), molecular diffusion (due to random thermal movement of molecules), turbulent diffusion (mixing), and dispersion. Chemicals may also be transported while adsorbed to suspended particulate matter. [Pg.38]

Simple molecular diffusion where solutes are transported due to variations in the solute concentrations within fluid phases. [Pg.531]

Diffusion measurements under nonequilibrium conditions are more complicated due to the difficulties in ensuring well defined initial and boundary conditions. IR spectroscopy has proved to be a rather sensitive tool for studying simultaneously the intracrystalline concentration of different diffusants, including the occupation density of catalytic sites [28], By choosing appropriate initial conditions, in this way both co- and counterdiffusion phenomena may be followed. Information about molecular transport diffusion under the conditions of multicomponent adsorption may also be deduced from flow measurements [99], As in the case of single-component adsorption, the diffusivities arc determined by matching the experimental data (i.e. the time dependence of the concentration of the effluent or the adsorbent) to the corresponding theoretical expressions. [Pg.376]

In Eqs. (6) and (7) e represents the internal energy per unit mas, q the heat flux vector due to molecular transport, Sh the volumetric heat production rate, ta, the mass fraction of species i, Ji the mass flux vector of species i due to molecular transport, and 5, the net production rate of species i per unit volume. In many chemical engineering applications the viscous dissipation term (—t Vm) appearing in Eq. (6) can safely be neglected. For closure of the above set of equations, an equation of state for the density p and constitutive equations for the viscous stress tensor r, the heat flux vector q, and the mass flux vector 7, are required. In the absence of detailed knowledge on the true rheology of the fluid, Newtonian behavior is often assumed. Thus, for t the following expression is used ... [Pg.237]

Mass flux vector of species i due to molecular transport, kg/(m s)... [Pg.316]


See other pages where Molecular transport due is mentioned: [Pg.406]    [Pg.388]    [Pg.406]    [Pg.388]    [Pg.1948]    [Pg.461]    [Pg.519]    [Pg.32]    [Pg.35]    [Pg.355]    [Pg.31]    [Pg.162]    [Pg.302]    [Pg.135]    [Pg.262]    [Pg.264]    [Pg.398]    [Pg.332]    [Pg.217]    [Pg.49]    [Pg.31]    [Pg.289]    [Pg.60]    [Pg.384]    [Pg.471]    [Pg.73]    [Pg.176]    [Pg.243]    [Pg.317]    [Pg.282]    [Pg.243]   


SEARCH



Molecular transport

Molecular transportation

© 2024 chempedia.info