Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular surface scattering reaction dynamics

Experiments have also played a critical role in the development of potential energy surfaces and reaction dynamics. In the earliest days of quantum chemistry, experimentally determined thermal rate constants were available to test and improve dynamical theories. Much more detailed information can now be obtained by experimental measurement. Today experimentalists routinely use molecular beam and laser techniques to examine how reaction cross-sections depend upon collision energies, the states of the reactants and products, and scattering angles. [Pg.239]

This book describes the proceedings of a NATO Advanced Research Workshop held at CECAM, Orsay, France in June, 1983. The Workshop concentrated on a critical examination and discussion of the recent developments in the theory of chemical reaction dynamics, with particular emphasis on quantum theories. Several papers focus on exact theories for reactions. Exact calculations on three-dimensional reactions are very hard to perform, but the results are valuable in testing the accuracy of approximate theories which can be applied, with less expense, to a wider variety of reactions. Indeed, critical discussions of the merits and defects of approximate theories, such as sudden, distorted-wave, reduced dimensionality and transition-state methods, form a major part of the book. The theories developed for chemical reactions have found useful extensions into other areas of chemistry and physics. This is illustrated by papers describing topics such as photodissociation, electron-scattering, molecular vibrations and collision-induced dissociation. Furthermore, the important topic of how to treat potential energy surfaces in reaction dynamics calculations is also discussed. [Pg.425]

In Chapter VI, Ohm and Deumens present their electron nuclear dynamics (END) time-dependent, nonadiabatic, theoretical, and computational approach to the study of molecular processes. This approach stresses the analysis of such processes in terms of dynamical, time-evolving states rather than stationary molecular states. Thus, rovibrational and scattering states are reduced to less prominent roles as is the case in most modem wavepacket treatments of molecular reaction dynamics. Unlike most theoretical methods, END also relegates electronic stationary states, potential energy surfaces, adiabatic and diabatic descriptions, and nonadiabatic coupling terms to the background in favor of a dynamic, time-evolving description of all electrons. [Pg.770]

Just as in gas phase kinetics, reactive molecular beam-surface scattering is providing important molecular level insight into reaction dynamics. There is no surface reaction for which such studies have proven more illuminating than the carbon monoxide oxidation reaction. For example Len, Wharton and co-workers (23) found that the product CO exits a 700K Pt surface with speeds characteristic of temperatures near 3000K. This indicates that the CO formed by the reactive encounter of adsorbed species is hurled off the surface along a quite repulsive potential. [Pg.51]

The detailed microscopic description of a chemical reaction in terms of the motion of the individual atoms taking part in the event is known as the reaction dynamics. The study of reaction dynamics at surfaces is progressing rapidly these years, to a large extent because more and more results from detailed molecular beam scattering experiments are becoming available. [Pg.16]

Study of kinetics and dynamics of surface reactions using the powerful methodologies available such as molecular beam scattering and high pressure reactor studies. [Pg.359]

The study of alkali atom reactions with halogen-containing molecules comprises much of the history of reactive scattering in molecular beams. The broad features of the reaction dynamics and their relation to the electronic structure of the potential energy surface are well understood.2 The reaction is initiated by an electron jump transition in which the valence electron of the alkali atom M is transferred to the halogen-containing molecule RX. Subsequent interaction of the alkali ion and the molecule anion, in the exit valley of the potential surface, leads to an alkali halide product molecule MX. [Pg.249]

This paper also provided much of the early stimulus for developing semiclassical and quantum mechanical theories of chemical reaction dynamics, which is a research field that continues to be active. In addition, this paper provided the foundation for molecular dynamics studies of chemical reactions in condensed phases, including applications to gas-surface scattering and bio-molecular simulation. [Pg.112]

The supersonic molecular beam technique plays an invaluable role in the development of modem physical chemistry and has contributed greatly to the molecular reaction dynamics [30, 31]. Nowadays, molecular beam technique is indispensable in the fields of photolysis, crossed molecular beam, cluster and molecular beam-surface scattering. [Pg.23]

The reactions H + H2 and F + H2 (and their isotopic variants) have been the benchmark systems in the field of chemical reaction dynamics. For them, fully converged three-dimensional (3D) quantum scattering calculations of state-to-state differential cross sections (DCS) have been performed and accurate comparisons with very detailed experimental observables carried out [3-9]. To date, only for one other neutral three-atom system have the exact (i.e., fully converged) 3D quantum scattering calculations of state-to-state DCS on a reliable ab initio potential energy surface (PES) been carried out, namely, for the prototypical reaction Cl + H2 [10], a system chemical kineticists have been interested in since the time of Max Bodenstein (for a historical overview, see the paper by Truhlar in this volume). However, in contrast to H + H2 and F + H2, no experimental dynamical information is available on Cl + H2. Here we highlight the results of the first dynamical investigation of the Cl + H2 and Cl + D2 reactions by the crossed molecular beam... [Pg.96]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

The F + H2 — HF + FI reaction is one of the most studied chemical reactions in science, and interest in this reaction dates back to the discovery of the chemical laser.79 In the early 1970s, a collinear quantum scattering treatment of the reaction predicted the existence of isolated resonances.80 Subsequent theoretical investigations, using various dynamical approximations on several different potential energy surfaces (PESs), essentially all confirmed this prediction. The term resonance in this context refers to a transient metastable species produced as the reaction occurs. Transient intermediates are well known in many kinds of atomic and molecular processes, as well as in nuclear and particle physics.81 What makes reactive resonances unique is that they are not necessarily associated with trapping... [Pg.30]


See other pages where Molecular surface scattering reaction dynamics is mentioned: [Pg.410]    [Pg.44]    [Pg.88]    [Pg.148]    [Pg.46]    [Pg.5]    [Pg.30]    [Pg.79]    [Pg.81]    [Pg.143]    [Pg.387]    [Pg.112]    [Pg.224]    [Pg.473]    [Pg.627]    [Pg.168]    [Pg.248]    [Pg.155]    [Pg.473]    [Pg.203]    [Pg.148]    [Pg.486]    [Pg.4638]    [Pg.18]    [Pg.44]    [Pg.46]    [Pg.63]    [Pg.56]    [Pg.20]    [Pg.2]    [Pg.37]    [Pg.2059]    [Pg.410]    [Pg.536]    [Pg.669]    [Pg.48]    [Pg.144]   
See also in sourсe #XX -- [ Pg.163 , Pg.164 , Pg.165 , Pg.166 , Pg.167 , Pg.168 ]




SEARCH



Dynamical scattering

Molecular reaction dynamics

Molecular scattering

Molecular surface

Molecular surface scattering

Reaction molecular

Surface scatterer

© 2024 chempedia.info