Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure vibrational spectra

Katsyuba, S. A., Dyson, P. J., Vandyukova, E. E., Chernova, A. V., and Vidis, A., Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid l-ethyl-3-methyl-lH-imidazolium tetrafluoroborate, Helv. Chim. Acta, 87, 2556-2565, 2004. [Pg.348]

Prasad, B. B., Rai, G. (2013). Molecular structure, vibrational spectra and quantum chemical MP2/DFT studies toward the rational design of hydrox3nirea imprinted polymer, Spectrochim. Acta, Part A. 105, 400-411. [Pg.655]

This spectrum is called a Raman spectrum and corresponds to the vibrational or rotational changes in the molecule. The selection rules for Raman activity are different from those for i.r. activity and the two types of spectroscopy are complementary in the study of molecular structure. Modern Raman spectrometers use lasers for excitation. In the resonance Raman effect excitation at a frequency corresponding to electronic absorption causes great enhancement of the Raman spectrum. [Pg.340]

The vibrational states of a molecule are observed experimentally via infrared and Raman spectroscopy. These techniques can help to determine molecular structure and environment. In order to gain such useful information, it is necessary to determine what vibrational motion corresponds to each peak in the spectrum. This assignment can be quite difficult due to the large number of closely spaced peaks possible even in fairly simple molecules. In order to aid in this assignment, many workers use computer simulations to calculate the vibrational frequencies of molecules. This chapter presents a brief description of the various computational techniques available. [Pg.92]

The molecular structures were rendered with good-quality shading on a blue background. Isosurfaces produced from cube files or checkpoint files also looked nice. Molecular vibrations can be animated on screen and vibrational displacement vectors displayed. The vibrational line spectrum may be displayed too, but the user has no control over the axes. There is no way to set the background color. The display can be saved using several image file formats. [Pg.350]

The spectrum of Figure lb is a fingerprint of the presence of a CO molecule, since it is different in detail from that of any other molecule. UPS can therefore be used to identify molecules, either in the gas phase or present at surfaces, provided a data bank of molecular spectra is available, and provided that the spectral features are sufficiently well resolved to distinguish between molecules. By now the gas phase spectra of most molecules have been recorded and can be found in the literature. Since one is using a pattern of peaks spread over only a few eV for identification purposes, mixtures of molecules present will produce overlapping patterns. How well mixtures can be analyzed depends, obviously, on how well overlapping peaks can be resolved. For molecules with well-resolved fine structure (vibrational) in the spectra (see Figure lb), this can be done much more successfiilly than for the broad. [Pg.302]

Since the vibrational spectra of sulfur allotropes are characteristic for their molecular and crystalline structure, vibrational spectroscopy has become a valuable tool in structural studies besides X-ray diffraction techniques. In particular, Raman spectroscopy on sulfur samples at high pressures is much easier to perform than IR spectroscopical studies due to technical demands (e.g., throughput of the IR beam, spectral range in the far-infrared). On the other hand, application of laser radiation for exciting the Raman spectrum may cause photo-induced structural changes. High-pressure phase transitions and structures of elemental sulfur at high pressures were already discussed in [1]. [Pg.82]

Fig.2 shows the infrared absorption spectrum of the tin oxide film. In order to analyze the molecular structure of the deposited film, we deposited the tin oxide film on a KBr disc with thickness of 1 mm and diameter of 13 mm. Various peaks formed by surface reaction are observed including O-H stretching mode at 3400 cm, C=C stretching mode at 1648 cm, and Sn02 vibration mode at 530 cm. The formation of sp structure with graphite-like is due to ion bombardment with hydrogen ions at the surface and plasma polymerization of methyl group with sp -CHa. [Pg.386]

Kesyczynski, J. Goodman, L., Kwiatkowski, J. S., 1997, Density Functional Theory and Post-Hartree-Fock Studies on Molecular Structure and Harmonic Vibrational Spectrum of Formaldehyde , Theor. Chem. Acc., 97, 195. [Pg.292]

Principles and Characteristics Vibrational spectroscopic techniques such as IR and Raman are exquisitely sensitive to molecular structure. These techniques yield incisive results in studies of pure compounds or for rather simple mixtures but are less powerful in the analysis of complex systems. The IR spectrum of a material can be different depending on the state of the molecule (i.e. solid, liquid or gas). In relation to polymer/additive analysis it is convenient to separate discussions on the utility of FUR for indirect analysis of extracts from direct in situ analysis. [Pg.311]

A nonlinear molecule of N atoms with 3N degrees of freedom possesses 3N — 6 normal vibrational modes, which not all are active. The prediction of the number of (absorption or emission) bands to be observed in the IR spectrum of a molecule on the basis of its molecular structure, and hence symmetry, is the domain of group theory [82]. Polymer molecules contain a very high number of atoms, yet their IR spectra are relatively simple. This can be explained by the fact that the polymer consists of identical monomeric units (except for the end-groups). [Pg.312]

Raman spectroscopy is primarily useful as a diagnostic, inasmuch as the vibrational Raman spectrum is directly related to molecular structure and bonding. The major development since 1965 in spontaneous, c.w. Raman spectroscopy has been the observation and exploitation by chemists of the resonance Raman effect. This advance, pioneered in chemical applications by Long and Loehr (15a) and by Spiro and Strekas (15b), overcomes the inherently feeble nature of normal (nonresonant) Raman scattering and allows observation of Raman spectra of dilute chemical systems. Because the observation of the resonance effect requires selection of a laser wavelength at or near an electronic transition of the sample, developments in resonance Raman spectroscopy have closely paralleled the increasing availability of widely tunable and line-selectable lasers. [Pg.466]

The dipole and polarization selection rules of microwave and infrared spectroscopy place a restriction on the utility of these techniques in the study of molecular structure. However, there are complementary techniques that can be used to obtain rotational and vibrational spectrum for many other molecules as well. The most useful is Raman spectroscopy. [Pg.283]

Despite the difficulty cited, the study of the vibrational spectrum of a liquid is useful to the extent that it is possible to separate intramolecular and inter-molecular modes of motion. It is now well established that the presence of disorder in a system can lead to localization of vibrational modes 28-34>, and that this localization is more pronounced the higher the vibrational frequency. It is also well established that there are low frequency coherent (phonon-like) excitations in a disordered material 35,36) These excitations are, however, heavily damped by virtue of the structural irregularities and the coupling between single molecule diffusive motion and collective motion of groups of atoms. [Pg.137]

Every example of a vibration we have introduced so far has dealt with a localized set of atoms, either as a gas-phase molecule or a molecule adsorbed on a surface. Hopefully, you have come to appreciate from the earlier chapters that one of the strengths of plane-wave DFT calculations is that they apply in a natural way to spatially extended materials such as bulk solids. The vibrational states that characterize bulk materials are called phonons. Like the normal modes of localized systems, phonons can be thought of as special solutions to the classical description of a vibrating set of atoms that can be used in linear combinations with other phonons to describe the vibrations resulting from any possible initial state of the atoms. Unlike normal modes in molecules, phonons are spatially delocalized and involve simultaneous vibrations in an infinite collection of atoms with well-defined spatial periodicity. While a molecule s normal modes are defined by a discrete set of vibrations, the phonons of a material are defined by a continuous spectrum of phonons with a continuous range of frequencies. A central quantity of interest when describing phonons is the number of phonons with a specified vibrational frequency, that is, the vibrational density of states. Just as molecular vibrations play a central role in describing molecular structure and properties, the phonon density of states is central to many physical properties of solids. This topic is covered in essentially all textbooks on solid-state physics—some of which are listed at the end of the chapter. [Pg.127]

The picosecond IR absorption spectrum of the tS state in the fingerprint region is different in w-heptane and in acetonitrile. The spectrum recorded for Si tS in the nonpolar solvent w-heptane is consistent with a species that has a center of symmetry. In acetonitrile, the spectrum exhibits additional weak bands near 1570, 1250, and 1180 cm which are approximately at the same frequencies as strong Raman bands assigned to in-plane vinylic vibrational modes in 5i. This result was taken to suggest a molecular structure for 5i that lacks a center of symmetry in acetonitrile. However, because the intensities of these three bands are weak, it was concluded that either the polarization of 5i or the contribution from polarized S structures to all of the S structures in acetonitrile may be small. [Pg.887]

The complexity of the physical properties of liquid water is largely determined by the presence of a three-dimensional hydrogen bond (HB) network [1]. The HB s undergo continuous transformations that occur on ultrafast timescales. The molecular vibrations are especially sensitive to the presence of the HB network. For example, the spectrum of the OH-stretch vibrational mode is substantially broadened and shifted towards lower frequencies if the OH-group is involved in the HB. Therefore, the microscopic structure and the dynamics of water are expected to manifest themselves in the IR vibrational spectrum, and, therefore, can be studied by methods of ultrafast infrared spectroscopy. It has been shown in a number of ultrafast spectroscopic experiments and computer simulations that dephasing dynamics of the OH-stretch vibrations of water molecules in the liquid phase occurs on sub-picosecond timescales [2-14],... [Pg.165]

Infrared and Raman spectroscopy are in current use fo r elucidating the molecular structures of nucleic acids. The application of infrared spectroscopy to studies of the structure of nucleic acids has been reviewed,135 as well as of Raman spectroscopy.136 It was noted that the assignments are generally based on isotopic substitution, or on comparison of the spectrum of simple molecules that are considered to form a part of the polynucleotide chain to that of the nucleic acid. The vibrational spectra are generally believed to be a good complementary technique in the study of chemical reactions, as in the study76 of carbohydrate complexation with boric acid. In this study, the i.r. data demonstrated that only ribose forms a solid complex with undissociated H3B03, and that the complexes are polymeric. [Pg.30]

Both the Raman and the infrared spectrum yield a partial description of the internal vibrational motion of the molecule in terms of the normal vibrations of the constituent atoms. Neither type of spectrum alone gives a complete description of the pattern of molecular vibration, and, by analysis of the difference between the Raman and the infrared spectrum, additional information about the molecular structure can sometimes be inferred. Physical chemists have made extremely effective use of such comparisons in the elucidation of the finer structural details of small symmetrical molecules, such as methane and benzene. But the mathematical techniques of vibrational analysis are. not yet sufficiently developed to permit the extension of these differential studies to the Raman and infrared spectra of the more complex molecules that constitute the main body of both organic and inorganic chemistry. [Pg.1418]


See other pages where Molecular structure vibrational spectra is mentioned: [Pg.246]    [Pg.2954]    [Pg.121]    [Pg.217]    [Pg.443]    [Pg.85]    [Pg.224]    [Pg.224]    [Pg.150]    [Pg.576]    [Pg.71]    [Pg.552]    [Pg.157]    [Pg.312]    [Pg.315]    [Pg.89]    [Pg.132]    [Pg.213]    [Pg.348]    [Pg.318]    [Pg.16]    [Pg.80]    [Pg.253]    [Pg.246]    [Pg.79]    [Pg.76]    [Pg.213]    [Pg.388]    [Pg.303]    [Pg.17]    [Pg.39]    [Pg.835]    [Pg.25]    [Pg.52]   


SEARCH



Molecular spectra

Molecular vibrational spectra

Molecular vibrations

Spectra structure

Structural vibration

Vibration structure

Vibrational molecular

Vibrational structures

© 2024 chempedia.info