Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure through vibrational

This sort of analysis provides a powerful use of spectroscopy to aid in the identification of molecular structure through the application of symmetry. If we had made a sample of difluorobenzene and believed it to be a pure isomer of either the 1,4- or 1,2-form, vibrational spectroscopy would provide one way to distinguish which isomer we had made. [Pg.190]

Yet another spectroscopic method that can be used to help determine molecular structure is vibrational circular dichroism (VCD). This technique detects differences in attenuation of left and right circularly polarized hght passing through the sample. VCD is sensitive to the mutual orientation of groups of atoms in a molecule and provides three-dimensional structural information. It is especially important in the study of chirality and molecular conformation. Only chiral molecules have a VCD spectrum. In particular, molecules that have either a plane of symmetry or a center of symmetry are VCD inactive. [Pg.335]

Models for description of liquids should provide us with an understanding of the dynamic behavior of the molecules, and thus of the routes of chemical reactions in the liquids. While it is often relatively easy to describe the molecular structure and dynamics of the gaseous or the solid state, this is not true for the liquid state. Molecules in liquids can perform vibrations, rotations, and translations. A successful model often used for the description of molecular rotational processes in liquids is the rotational diffusion model, in which it is assumed that the molecules rotate by small angular steps about the molecular rotation axes. One quantity to describe the rotational speed of molecules is the reorientational correlation time T, which is a measure for the average time elapsed when a molecule has rotated through an angle of the order of 1 radian, or approximately 60°. It is indirectly proportional to the velocity of rotational motion. [Pg.168]

As briefly stated in the introduction, we may consider one-dimensional cross sections through the zero-order potential energy surfaces for the two spin states, cf. Fig. 9, in order to illustrate the spin interconversion process and the accompanying modification of molecular structure. The potential energy of the complex in the particular spin state is thus plotted as a function of the vibrational coordinate that is most active in the process, i.e., the metal-ligand bond distance, R. These potential curves may be taken to represent a suitable cross section of the metal 3N-6 dimensional potential energy hypersurface of the molecule. Each potential curve has a minimum corresponding to the stable... [Pg.84]

The discussion above provides the necessary elements to answer the question posed in the heading. If the intermediate does not exist (i.e., its lifetime is shorter than one vibration), the concerted mechanism is necessarily followed. Conversely, however, if the intermediate exists, the reaction pathway does not necessarily go through it, depending on the molecular structure and the driving force. Dichotomy and competition between the two mechanisms is a general problem of chemical reactivity. The example of electron transfer/bond reactions has allowed a detailed analysis of the problem, thanks to the use of electrochemical techniques on the experimental side and of semiempirical models on the theoretical side. [Pg.216]

We examine the derivation of information about molecular structure and properties from analysis of pure rotational and vibration-rotational spectral data of diatomic molecular species on the basis of Dunham s algebraic formalism, making comparison with results from alternative approaches. According to an implementation of computational spectrometry, wave-mechanical calculations of molecular electronic structure and properties have already played an important role in spectral reduction through interaction of quantum chemistry and spectral analysis. [Pg.253]

Both Raman and infrared spectroscopy provide qualitative and quantitative information about ehemieal species through the interaetion of radiation with molecular vibrations. Raman spectroscopy complements infrared spectroscopy, particularly for the study of non-polar bonds and certain functional groups. It is often used as an additional technique for elueidating the molecular structure and symmetry of a eompound. Raman spectroseopy also provides facile access to the low frequency region (less than 400 cm Raman shift), an area that is more difficult for infrared speetroseopy. [Pg.13]

IR spectroscopy, one of the few surface analytical techniques not requiring a vacuum, provides a large amount of molecular information. The absorption versus frequency characteristics are obtained when a beam of IR radiation is transmitted through a specimen. IR is absorbed when a dipole vibrates naturally at the same frequency as the absorber, and the pattern of vibration is unique for a given molecule. Therefore, the components or groups of atoms that are absorbed into the IR at specific frequencies can be determined, allowing identification of the molecular structure. [Pg.18]

The molecular dynamic technique has been validated for water structures through comparison of calculated properties with experimental thermodynamic water data, such as the density maximum, the high heat capacity, and diffraction patterns (Stillinger and Rahman, 1974) as well as the hydrate infrared (vibrational) spectral data by Bertie and Jacobs (1977, 1982). With acceptable comparisons of many computed and experimental properties of water structures, there is little doubt that a substance similar to water has been simulated. [Pg.310]

Infrared light is absorbed through vibrations of the atoms or rotations of the molecular system. IR spectra give information on lattice dynamics, bond strengths, coordination, and polyhedral linkage in complex structures. [Pg.520]

The reduced partition functions of isotopic molecules determine the isotope separation factors in all equilibrium and many non-equilibrium processes. Power series expansion of the function in terms of even powers of the molecular vibrations has given explicit relationships between the separation factor and molecular structure and molecular forces. A significant extension to the Bernoulli expansion, developed previously, which has the restriction u = hv/kT < 2n, is developed through truncated series, derived from the hyper-geometric function. The finite expansion can be written in the Bernoulli form with determinable modulating coefficients for each term. They are convergent for all values of u and yield better approximations to the reduced partition function than the Bernoulli expansion. The utility of the present method is illustrated through calcidations on numerous molecular systems. [Pg.192]


See other pages where Molecular structure through vibrational is mentioned: [Pg.81]    [Pg.8]    [Pg.15]    [Pg.4]    [Pg.395]    [Pg.315]    [Pg.87]    [Pg.121]    [Pg.267]    [Pg.334]    [Pg.406]    [Pg.310]    [Pg.20]    [Pg.20]    [Pg.178]    [Pg.246]    [Pg.76]    [Pg.253]    [Pg.168]    [Pg.946]    [Pg.721]    [Pg.38]    [Pg.233]    [Pg.205]    [Pg.172]    [Pg.278]    [Pg.12]    [Pg.628]    [Pg.292]    [Pg.310]    [Pg.139]    [Pg.497]    [Pg.50]    [Pg.233]    [Pg.73]    [Pg.395]    [Pg.6]    [Pg.714]    [Pg.106]   


SEARCH



Molecular vibrations

Structural vibration

Vibration structure

Vibrational molecular

Vibrational structures

© 2024 chempedia.info