Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular pore dimensions

If the solute size is approximately the (apparent) membrane-pore size, it interferes with the pore dimensions. The solute concentration in the permeate first increases, then decreases with time. The point of maximum interference is further characterized as a minimum flux. Figure 4 is a plot of retention and flux versus molecular weight. It shows the minimum flux at ca 60—90% retention. [Pg.296]

These tetrahedra are arranged in a number of ways to give the different zeohtes. The stmctures are unique in that they incorporate pores as part of the regular crystalline stmctures. The pores have dimensions of the order of molecular dimensions so that some molecules fit into the pores and some do not. Hence the zeohtes are molecular sieves (qv), and they are apphed in industrial separations processes to take advantage of this property. Some zeohtes and their pore dimensions are hsted in Table 2. [Pg.177]

Because the pore dimensions in narrow pore zeolites such as ZSM-22 are of molecular order, hydrocarbon conversion on such zeolites is affected by the geometry of the pores and the hydrocarbons. Acid sites can be situated at different locations in the zeolite framework, each with their specific shape-selective effects. On ZSM-22 bridge, pore mouth and micropore acid sites occur (see Fig. 2). The shape-selective effects observed on ZSM-22 are mainly caused by conversion at the pore mouth sites. These effects are accounted for in the hydrocracking kinetics in the physisorption, protonation and transition state formation [12]. [Pg.55]

In industry, the emphasis is mainly on developing an active, selective, stable and mechanically robust catalyst. To accomplish this, tools are needed which identify those structural properties that discriminate efficient from less efficient catalysts. All information that helps to achieve this is welcome. Empirical relationships between those factors that govern catalyst composition (e.g. particle size and shape, and pore dimensions) and those that determine catalytic performance are extremely useful in catalyst development, although they do not always give fundamental insights into how the catalyst operates on the molecular level. [Pg.129]

On this basis the porosity and surface composition of a number of silicas and zeolites were varied systematically to maximize retention of the isothizolinone structures. For the sake of clarity, data is represented here for only four silicas (Table 1) and three zeolites (Table 2). Silicas 1 and 3 differ in their pore dimensions, these being ca. 20 A and 180 A respectively. Silicas 2 and 4, their counterparts, have been calcined to optimise the number and distribution of isolated silanol sites. Zeolites 1 and 2 are the Na- and H- forms of zeolite-Y respectively. Zeolite 3 is the H-Y zeolite after subjecting to steam calcination, thereby substantially increasing the proportion of Si Al in the structure. The minimum pore dimensions of these materials were around 15 A, selected on the basis that energy-minimized structures obtained by molecular modelling predict the widest dimension of the bulkiest biocide (OIT) to be ca. 13 A, thereby allowing entry to the pore network. [Pg.89]

Change in wettability or reduction in pore dimensions by adsorption (organics with large molecular weight). [Pg.814]

Ordinary or bulk diffusion is primarily responsible for molecular transport when the mean free path of a molecule is small compared with the diameter of the pore. At 1 atm the mean free path of typical gaseous species is of the order of 10 5 cm or 103 A. In pores larger than 1CT4 cm the mean free path is much smaller than the pore dimension, and collisions with other gas phase molecules will occur much more often than collisions with the pore walls. Under these circumstances the effective diffusivity will be independent of the pore diameter and, within a given catalyst pore, ordinary bulk diffusion coefficients may be used in Fick s first law to evaluate the rate of mass transfer and the concentration profile in the pore. In industrial practice there are three general classes of reaction conditions for which the bulk value of the diffusion coefficient is appropriate. For all catalysts these include liquid phase reactions... [Pg.432]

Zeolites are crystalline porous solids with pore dimensions at the molecular level. Some zeolite types, such as the faujasites (zeolite X and Y or their hexagonal isomer EMT), possess large supercages with an internal diameter of approximately 1.2 nm, connected by pores with a diameter of approximately 0.75 nm. A metal complex will be confined in the supercage, when its size exceeds 0.8 nm. [Pg.1430]

The 12-MR pores in the CIT-1 structure [International Zeolite Association (IZA) structure code, CON] are 6.8 x 6.4 A in diameter while the intersecting 10-MR pores are5.1x5.lA.B oth pore dimensions might be regarded as small for the ring size but interestingly molecular simulation of the pores between 0 and 200 K indicate the 10-MR pores can flex by >1 A (25). The potential catalytic activity of... [Pg.225]

Membranes with extremely small pores ( < 2.5 nm diameter) can be made by pyrolysis of polymeric precursors or by modification methods listed above. Molecular sieve carbon or silica membranes with pore diameters of 1 nm have been made by controlled pyrolysis of certain thermoset polymers (e.g. Koresh, Jacob and Soffer 1983) or silicone rubbers (Lee and Khang 1986), respectively. There is, however, very little information in the published literature. Molecular sieve dimensions can also be obtained by modifying the pore system of an already formed membrane structure. It has been claimed that zeolitic membranes can be prepared by reaction of alumina membranes with silica and alkali followed by hydrothermal treatment (Suzuki 1987). Very small pores are also obtained by hydrolysis of organometallic silicium compounds in alumina membranes followed by heat treatment (Uhlhom, Keizer and Burggraaf 1989). Finally, oxides or metals can be precipitated or adsorbed from solutions or by gas phase deposition within the pores of an already formed membrane to modify the chemical nature of the membrane or to decrease the effective pore size. In the last case a high concentration of the precipitated material in the pore system is necessary. The above-mentioned methods have been reported very recently (1987-1989) and the results are not yet substantiated very well. [Pg.18]

Molecular sieves are porous aluminosilicates (zeolites) or carbon solids that contain pores of molecular dimensions which can exhibit seleaivity according to the size of the gas molecule. The most extensive study on carbon molecular sieve membranes is the one by Koresh and Soffer (1980,1987). Bird and Trimm (1983) also described the performance of carbon molecular sieve membranes, but they were unable to prepare a continuous membrane. Koresh and Soffer (1980) prepared hollow-fiber carbon molecular sieves, with pores dimensions between 0.3 and 2.0 run radius (see Chapter 2). [Pg.107]

The NMR chemical shift of I29xe adsorbed on molecular sieves reflects all the interactions between the electron cloud of the xenon atoms and their environment in the intracrystalline void volume [1]. This nucleus therefore proved to be an ideal probe for investigating various zeolitic properties such as pore dimensions [2, 3], location of the countercations [4, 5], distribution of adsorbed or occluded phases [6-8] and framework polarisability [8, 9]. [Pg.11]

Shape selective reactions are typically carried out over zeolites, molecular sieves and other porous materials. There are three major classifications of shape selectivity including (1) reactant shape selectivity where reactants of sizes less than the pore size of the support are allowed to enter the pores to react over active sites, (2) product shape selectivity where products of sizes smaller than the pore dimensions can leave the catalyst and (3) transition state shape selectivity where sizes of pores can influence the types of transition states that may form. Other materials like porphyrins, vesicles, micelles, cryptands and cage complexes have been shown to control product selectivities by shape selective processes. [Pg.16]

In equations (5) and (6), DM and DK are the molecular and Knudsen diffusivities, respectively, and e and x are the void fraction and the tortuosity of the porous solid, respectively. For pore dimensions significantly larger than the mean free path of the diffusant in the gas phase, the diffusivity is governed by molecular diffusion, but when the pore diameter becomes smaller than the mean free path, diffusion is properly described by Knudsen diffusion. When the pore diameter approaches that of the diffusing species, around 10, one enters the configurational regime. [Pg.215]

Application Qearly one important application of microporous materials in which the effectiveness is critically dependent on the monodispersity of the pores is the sieving of proteins. In order that an ultrafiltration membrane have high selectivity for proteins on the basis of size, the pore dimensions must first of all be on the order of 25 - ioOA, which is the size range provided by typical cubic phases. In addition to this, one important goal in the field of microporous matmals is the attainment of the narrowest possible pore size distribution, enabling isloation of proteins of a very specific molecular weight, for example. Applications in which separation of proteins by molecular weight are of proven or potential importance are immunoadsorption process, hemodialysis, purification of proteins, and microencapsulation of functionally-specific cells. [Pg.219]

The aim of this review is to describe the most interesting results characterizing the skeletal isomerization of n-butenes catalyzed by zeolitic and nonzeolitic molecular sieves and to discuss the state of the art of the isomerization mechanism, the nature and location of the active sites responsible for the selectivity for isobutylene, and the influence of the pore dimensions and pore structures of the molecular sieves. [Pg.506]

In view of the current interest in environmental protection, we have studied the possibility of using transition substituted molecular sieves for catalyzing the heterogeneous oxidation of aniline and, more generally arylamines. We have recently reported that TS-l, the titanium-substituted silicalite-1, was an excellent catalyst for the selective oxidation of aniline into AZY [6], provided that the H202/aniline ratio was relatively low (< 1.6). We showed that the oxidation more likely proceeded via the formation of phenylhydroxylamine (PH) and nitrosobenzene (NSB) and that these intermediate compounds could react together to form AZY. Because of the small pore dimensions of the structure, the reaction could not be carried out with TBHP and was limited by diffusion of reagents and/or products in the channels. [Pg.689]

The results of catalyst testing runs are shown in Figures 1 and 2. With a critical molecular size of 0.5-0.55 nm for all three molecules involved in the reaction [5], the influence of pore dimensions is clearly seen as nickel deposited on a ZSM-5 support (average channel size of 0.55 nm [6]) does not deactivate rapidly, while nickel supported on USY zeolite (average channel size of 0.77 nm [6]) and nickel on mordenite (average chaimel size of 0.68 nm [6])... [Pg.120]


See other pages where Molecular pore dimensions is mentioned: [Pg.675]    [Pg.270]    [Pg.497]    [Pg.497]    [Pg.173]    [Pg.140]    [Pg.365]    [Pg.88]    [Pg.94]    [Pg.414]    [Pg.50]    [Pg.180]    [Pg.212]    [Pg.56]    [Pg.90]    [Pg.96]    [Pg.56]    [Pg.317]    [Pg.80]    [Pg.357]    [Pg.477]    [Pg.150]    [Pg.150]    [Pg.393]    [Pg.6]    [Pg.663]    [Pg.403]    [Pg.198]    [Pg.230]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Molecular dimensions

Pores pore dimensions

© 2024 chempedia.info