Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular oxygen, oxidation anionic

A second separation technique is leaching, which uses solubility properties to separate the components of an ore. For example, modem gold production depends on the extraction of tiny particles of gold from gold-bearing rock deposits. After the rock is crushed, it is treated with an aerated aqueous basic solution of sodium cyanide. Molecular oxygen oxidizes the metal, which forms a soluble coordination complex with the cyanide anion ... [Pg.1465]

Although ketones are essentially inert to molecular oxygen, enolate anions are susceptible to oxidation. The combination of oxygen and a base has found synthetic utility in permitting introduction of an oxygen function at a potential carbanion site. Hydroperoxides are believed to be the initial products of such oxidations, but... [Pg.384]

Superoxide anion is produced by the addition of an electron to molecular oxygen. Superoxide anion can promote oxidative reactions by (1) reduction of transition metals to their more prooxidative state, (2) promotion of metal release from proteins, (3) through the pH dependent formation of its conjugated acid which can directly catalyze lipid oxidation, and (4) through its spontaneous dismu-tation into hydrogen peroxide. Due to the ability of superoxide anion to participate in oxidative reactions, the biological tissues from which foods originate will contain superoxide dismutase (SOD). [Pg.113]

The ff-oxidation of carbonyl compounds may be performed by addition of molecular oxygen to enolate anions and subsequent reduction of the hydroperoxy group, e.g. with triethyl phosphite (E.J. Bailey, 1962 J.N. Gardner, 1968 A,B). If the initially formed a-hydroperoxide possesses another enolizable a-proton, dehydration to the 1,2-dione occurs spontaneously, and further oxidation to complex product mitctures is usually observed. [Pg.121]

One of the important consequences of neuronal stimulation is increased neuronal aerobic metabolism which produces reactive oxygen species (ROS). ROS can oxidize several biomoiecules (carbohydrates, DNA, lipids, and proteins). Thus, even oxygen, which is essential for aerobic life, may be potentially toxic to cells. Addition of one electron to molecular oxygen (O,) generates a free radical [O2)) the superoxide anion. This is converted through activation of an enzyme, superoxide dismurase, to hydrogen peroxide (H-iO,), which is, in turn, the source of the hydroxyl radical (OH). Usually catalase... [Pg.280]

The Glaser coupling reaction is carried out in aqueous ammonia or an alcohol/ammonia solution in the presence of catalytic amounts of a copper-I salt. The required copper-II species for reaction with the acetylide anion R-C=C are generated by reaction with an oxidant—usually molecular oxygen. For the Eglinton procedure, equimolar amounts of a copper-II salt are used in the presence of pyridine as base. [Pg.136]

Luminescence reaction. Pholasin undergoes an oxidative luminescence reaction in the presence of any of the following substances Pholas luciferase, ferrous ions, H2O2, peroxidases, superoxide anions, hypochlorite and other oxidants. In all cases, molecular oxygen is required and pholasin is converted into oxypholasin in the reaction. [Pg.196]

Metallic iron is made up of neutral iron atoms held together by shared electrons (see Section 10.7). The formation of rust involves electron-transfer reactions. Iron atoms lose three electrons each, forming Fe cations. At the same time, molecular oxygen gains electrons from the metal, each molecule adding four electrons to form a pair of oxide anions. As our inset figure shows, the Fe cations combine with O anions to form insoluble F 2 O3, rust. Over time, the surface of an iron object becomes covered with flaky iron(ni) oxide and pitted from loss of iron atoms. [Pg.1350]

XOR is a cytoplasmic enzyme and a ready source of electrons for transfer to molecular oxygen to form reactive oxygen species such as superoxide and peroxide. It is therefore thought to be involved in free radical-generated tissue injury and has been implicated in the pathogenesis of ischemia-reperfusion damage. Moreover, it has recently been implicated in the production of peroxynitrite (89), and carbonate radical anion (92), both potent biological oxidants. Its exact role in lipid peroxidation, inflammation, and infection needs... [Pg.65]

A semiquinone can be readily oxidized to the parent compormd by molecular oxygen and can then re-enter the reductase-catalyzed reaction. The enzymatic reduction and autoxidation of quinones rmder aerobic conditions generates superoxide anion radicals, and this process is known as redox cycling (Figure 2). Flydroquinones are less prone to transfer electrons to oxygen, because the second-electron potential is often too high. [Pg.154]

In order to model the oxygenation of vitamin K in its hydroquinone form, a naph-thohydroquinone derivative with a 1-hydroxy group and 4-ethyl ether was prepared and its alkoxide subjected to oxidation with molecular oxygen. Products consistent with two possible mechanisms were isolated, the epoxy-quinone which must derive from a peroxy anion intermediate at the 4-position, and a 2-hydroxy product which... [Pg.243]


See other pages where Molecular oxygen, oxidation anionic is mentioned: [Pg.1138]    [Pg.431]    [Pg.279]    [Pg.403]    [Pg.250]    [Pg.282]    [Pg.271]    [Pg.27]    [Pg.285]    [Pg.256]    [Pg.1466]    [Pg.75]    [Pg.358]    [Pg.367]    [Pg.99]    [Pg.129]    [Pg.108]    [Pg.366]    [Pg.62]    [Pg.271]    [Pg.21]    [Pg.1163]    [Pg.284]    [Pg.7]    [Pg.159]    [Pg.359]    [Pg.74]    [Pg.441]    [Pg.65]    [Pg.94]    [Pg.162]    [Pg.277]    [Pg.86]    [Pg.100]    [Pg.135]    [Pg.242]    [Pg.54]   


SEARCH



Anion oxidation

Anions molecular

Oxidation molecular oxygen

Oxide anion

Oxygen anion

Oxygen, molecular, oxidant

© 2024 chempedia.info