Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular orbitals reaction rates

Sequences such as the above allow the formulation of rate laws but do not reveal molecular details such as the nature of the transition states involved. Molecular orbital analyses can help, as in Ref. 270 it is expected, for example, that increased strength of the metal—CO bond means decreased C=0 bond strength, which should facilitate process XVIII-55. The complexity of the situation is indicated in Fig. XVIII-24, however, which shows catalytic activity to go through a maximum with increasing heat of chemisorption of CO. Temperature-programmed reaction studies show the presence of more than one kind of site [99,1(K),283], and ESDIAD data show both the location and the orientation of adsorbed CO (on Pt) to vary with coverage [284]. [Pg.732]

The way the substituents affect the rate of the reaction can be rationalised with the aid of the Frontier Molecular Orbital (FMO) theory. This theory was developed during a study of the role of orbital symmetry in pericyclic reactions by Woodward and Hoffinann and, independently, by Fukui Later, Houk contributed significantly to the understanding of the reactivity and selectivity of these processes. ... [Pg.4]

Consider again the electron-transfer reaction O + ne = R the actual electron transfer step involves transfer of the electron between the conduction band of the electrode and a molecular orbital of O or R (e.g., for a reduction, from the conduction band into an unoccupied orbital in O). The rate of the forward (reduction) reaction, Vf, is first order in O ... [Pg.12]

It is not intended that the equations of this study be used to supplant the much more elegant molecular orbital calculations, both semiempirical and ab initio, and the mechanical modeling studies of radical forming reactions. However, it may be possible to make some hypotheses about differences in mechanisms between reaction families, based on the values of the slopes in Table IV. The slopes could be considered "sensitivity factors" (like rho values) for measuring the relative magnitude of transition state effects (U) and reactant state effects (N) on the rates of the four reactions of this study. [Pg.425]

The overall results of substituent effects are observed in the products of a reaction, their rates of formation, and their stereochemistries. The purpose of this article is to apply very simple theoretical techniques to correlations and predictions of the rate and stereoselectivity effects of substituents in [2+2] photocycloadditions. The theoretical methods that will be used are perturbational molecular orbital (PMO) theory and its pictorial representation, the interaction diagram. Only an outline of the theory will be given below, since several more detailed descriptions are available. 4,18-34)... [Pg.144]

Co2(CO)q system, reveals that the reactions proceed through mononuclear transition states and intermediates, many of which have established precedents. The major pathway requires neither radical intermediates nor free formaldehyde. The observed rate laws, product distributions, kinetic isotope effects, solvent effects, and thermochemical parameters are accounted for by the proposed mechanistic scheme. Significant support of the proposed scheme at every crucial step is provided by a new type of semi-empirical molecular-orbital calculation which is parameterized via known bond-dissociation energies. The results may serve as a starting point for more detailed calculations. Generalization to other transition-metal catalyzed systems is not yet possible. [Pg.39]

The Diels-Alder reaction (47t 2ir cycloaddition) is by far the best studied reaction of dienes from both theoretical and experimental viewpoints. Frontier molecular orbital theory predicts three types of Diels-Alder reaction. Structural effects on rate constants show the existence of two types of reaction ... [Pg.717]

Chevrier et al., 1983), solvent effects (Bensaude et al., 1979), and the effect of added salt on the rate of reaction (Bensaude et al., 1978) have been studied to provide information about this process. Molecular-orbital calculations confirm that a suitable transition state for the reaction is one involving bridging water molecules (Field et al., 1984). [Pg.204]

In 1960, Yates and Eaton (192) demonstrated that Lewis acids can dramatically accelerate the Diels-Alder reaction. In principle, any transformation wherein coordination of a Lewis acid may reduce the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of a given set of reactants should be susceptible to Lewis acid catalysis. Indeed, numerous important carbon-carbon bond-forming organic transformations have been shown to be amenable to rate acceleration by a Lewis acid. In many cases, the use... [Pg.88]

The Dotz reaction mechanism has received further support from kinetic and theoretical studies. An early kinetic investigation [37] and the observation that the reaction of the metal carbene with the alkyne is supressed in the presence of external carbon monoxide [38] indicated that the rate-determining step is a reversible decarbonylation of the original carbene complex. Additional evidence for the Dotz mechanistic hyphotesis has been provided by extended Hiickel molecular orbital [23, 24] and quantum chemical calculations [25],... [Pg.274]

Electron affinities for 35 substituted nitrobenzenes have been reported and provided a comprehensive data set for the examination of substituent effects38. The data were used to derive Taft gas-phase substituent parameters and discussed qualitatively based on frontier orbital molecular theory38. The rate constants for the exo-energetic electron-transfer reactions were found to be close to those predicted by the ADO (average dipole orientation) theory38. [Pg.258]

Lewis-acid catalysis of Diels-Alder reactions (Figure 7.5) in organic solvents leads to an enhancement of the reaction rate, because of the lowering in energy for the lowest unoccupied molecular orbital (LUMO) of the dienophile, and an improvement in the selectivity with specific ligands. [Pg.164]


See other pages where Molecular orbitals reaction rates is mentioned: [Pg.180]    [Pg.801]    [Pg.182]    [Pg.324]    [Pg.326]    [Pg.27]    [Pg.202]    [Pg.417]    [Pg.5]    [Pg.152]    [Pg.466]    [Pg.256]    [Pg.253]    [Pg.374]    [Pg.107]    [Pg.254]    [Pg.794]    [Pg.114]    [Pg.629]    [Pg.693]    [Pg.702]    [Pg.463]    [Pg.209]    [Pg.386]    [Pg.439]    [Pg.337]    [Pg.207]    [Pg.142]    [Pg.239]    [Pg.178]    [Pg.3]    [Pg.326]    [Pg.211]    [Pg.379]    [Pg.135]    [Pg.145]   
See also in sourсe #XX -- [ Pg.713 , Pg.715 , Pg.716 , Pg.719 ]




SEARCH



Orbitals reaction

Reaction molecular

© 2024 chempedia.info