Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular models for porous

Pikunic J, Pellenq RJ-M, Thomson KT, Rouzaud J-N, Levitz P, Gubbins KE. Improved molecular models for porous carbons. Stud Surf Sci Catal 2001 132 647-652. [Pg.85]

The evolution of molecular models for disordered porous carbons is strongly connected with the advance of experimental techniques such as diffraction methods and electron microscopy. First, X-ray studies on carbon blacks revealed that these materials consist of a wealth of small graphitic crystallites. [Pg.107]

Glaser and Litt (G4) have proposed, in an extension of the above study, a model for gas-liquid flow through a b d of porous particles. The bed is assumed to consist of two basic structures which influence the fluid flow patterns (1) Void channels external to the packing, with which are associated dead-ended pockets that can hold stagnant pools of liquid and (2) pore channels and pockets, i.e., continuous and dead-ended pockets in the interior of the particles. On this basis, a theoretical model of liquid-phase dispersion in mixed-phase flow is developed. The model uses three bed parameters for the description of axial dispersion (1) Dispersion due to the mixing of streams from various channels of different residence times (2) dispersion from axial diffusion in the void channels and (3) dispersion from diffusion into the pores. The model is not applicable to turbulent flow nor to such low flow rates that molecular diffusion is comparable to Taylor diffusion. The latter region is unlikely to be of practical interest. The model predicts that the reciprocal Peclet number should be directly proportional to nominal liquid velocity, a prediction that has been confirmed by a few determinations of residence-time distribution for a wax desulfurization pilot reactor of 1-in. diameter packed with 10-14 mesh particles. [Pg.99]

The search for better catalysts has been facilitated in recent years by molecular modeling. We are seeing here a step change. This is the subject of Chapter 1 (Molecular Catalytic Kinetics Concepts). New types of catalysts appeared to be more selective and active than conventional ones. Tuned mesoporous catalysts, gold catalysts, and metal organic frameworks (MOFs) that are discussed in Chapter 2 (Hierarchical Porous Zeolites by Demetallation, 3 (Preparation of Nanosized Gold Catalysts and Oxidation at Room Temperature), and 4 (The Fascinating Structure... [Pg.389]

One of the key parameters for correlating molecular structure and chemical properties with bioavailability has been transcorneal flux or, alternatively, the corneal permeability coefficient. The epithelium has been modeled as a lipid barrier (possibly with a limited number of aqueous pores that, for this physical model, serve as the equivalent of the extracellular space in a more physiological description) and the stroma as an aqueous barrier (Fig. 11). The endothelium is very thin and porous compared with the epithelium [189] and often has been ignored in the analysis, although mathematically it can be included as part of the lipid barrier. Diffusion through bilayer membranes of various structures has been modeled for some time [202] and adapted to ophthalmic applications more recently [203,204]. For a series of molecules of similar size, it was shown that the permeability increases with octa-nol/water distribution (or partition) coefficient until a plateau is reached. Modeling of this type of data has led to the earlier statement that drugs need to be both... [Pg.441]

In part II of the present report the nature and molecular characteristics of asphaltene and wax deposits from petroleum crudes are discussed. The field experiences with asphaltene and wax deposition and their related problems are discussed in part III. In order to predict the phenomena of asphaltene deposition one has to consider the use of the molecular thermodynamics of fluid phase equilibria and the theory of colloidal suspensions. In part IV of this report predictive approaches of the behavior of reservoir fluids and asphaltene depositions are reviewed from a fundamental point of view. This includes correlation and prediction of the effects of temperature, pressure, composition and flow characteristics of the miscible gas and crude on (i) Onset of asphaltene deposition (ii) Mechanism of asphaltene flocculation. The in situ precipitation and flocculation of asphaltene is expected to be quite different from the controlled laboratory experiments. This is primarily due to the multiphase flow through the reservoir porous media, streaming potential effects in pipes and conduits, and the interactions of the precipitates and the other in situ material presnet. In part V of the present report the conclusions are stated and the requirements for the development of successful predictive models for the asphaltene deposition and flocculation are discussed. [Pg.446]

Molecular modeling of PT at dense interfacial arrays of protogenic surface groups in PEMs needs ab initio quantum mechanical calculations. In spite of fhe dramafic increase in computational capabilihes, it is still "but a dream" to perform full ab initio calculations of proton and water transport within realistic pores or even porous networks of PEMs. This venture faces two major obstacles structural complexity and the rarity of proton transfer events. The former defines a need for simplified model systems. The latter enforces the use of advanced compufahonal techniques that permit an efficient sampling of rare evenfs. ... [Pg.385]

This section provides a comprehensive overview of recent efforts in physical theory, molecular modeling, and performance modeling of CLs in PEFCs. Our major focus will be on state-of-the-art CLs that contain Pt nanoparticle electrocatalysts, a porous carbonaceous substrate, and an embedded network of interconnected ionomer domains as the main constituents. The section starts with a general discussion of structure and processes in catalyst layers and how they transpire in the evaluation of performance. Thereafter, aspects related to self-organization phenomena in catalyst layer inks during fabrication will be discussed. These phenomena determine the effective properties for transport and electrocatalytic activity. Finally, physical models of catalyst layer operation will be reviewed that relate structure, processes, and operating conditions to performance. [Pg.403]

At this time, only a small number of nanoscale processes are characterized with transport phenomena equations. Therefore, if, for example, a chemical reaction takes place in a nanoscale process, we cannot couple the elementary chemical reaction act with the classical transport phenomena equations. However, researchers have found the keys to attaching the molecular process modelling to the chemical engineering requirements. For example in the liquid-vapor equilibrium, the solid surface adsorption and the properties of very fine porous ceramics computed earlier using molecular modelling have been successfully integrated in modelling based on transport phenomena [4.14]. In the same class of limits we can include the validity limits of the transfer phenomena equations which are based on parameters of the thermodynamic state. It is known [3.15] that the flow equations and, consequently, the heat and mass transport equations, are valid only for the... [Pg.48]


See other pages where Molecular models for porous is mentioned: [Pg.47]    [Pg.102]    [Pg.130]    [Pg.359]    [Pg.47]    [Pg.102]    [Pg.130]    [Pg.359]    [Pg.130]    [Pg.136]    [Pg.1504]    [Pg.154]    [Pg.561]    [Pg.131]    [Pg.147]    [Pg.12]    [Pg.181]    [Pg.315]    [Pg.423]    [Pg.25]    [Pg.26]    [Pg.116]    [Pg.263]    [Pg.233]    [Pg.241]    [Pg.1326]    [Pg.7]    [Pg.40]    [Pg.54]    [Pg.114]    [Pg.97]    [Pg.9]    [Pg.544]    [Pg.574]    [Pg.21]    [Pg.21]    [Pg.28]    [Pg.28]    [Pg.44]    [Pg.47]    [Pg.476]    [Pg.259]    [Pg.315]    [Pg.1807]   


SEARCH



Molecular models for porous carbons

© 2024 chempedia.info