Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular modeling organic molecules

Use Molecular Models Organic chemistry is a three-dimensional science. Although this book uses stereo views and many careful drawings to help you visualize molecules, there s no substitute for building a molecular model and turning it around in your own hands. [Pg.1338]

The most severe limitation of ah initio methods is the limited size of the molecule that can be modeled on even the largest computers. Semiempirical calculations can be used for large organic molecules, but are also too computation-intensive for most biomolecular systems. If a molecule is so big that a semiempirical treatment cannot be used elfectively, it is still possible to model its behavior avoiding quantum mechanics totally by using molecular mechanics. [Pg.49]

Empirical energy functions can fulfill the demands required by computational studies of biochemical and biophysical systems. The mathematical equations in empirical energy functions include relatively simple terms to describe the physical interactions that dictate the structure and dynamic properties of biological molecules. In addition, empirical force fields use atomistic models, in which atoms are the smallest particles in the system rather than the electrons and nuclei used in quantum mechanics. These two simplifications allow for the computational speed required to perform the required number of energy calculations on biomolecules in their environments to be attained, and, more important, via the use of properly optimized parameters in the mathematical models the required chemical accuracy can be achieved. The use of empirical energy functions was initially applied to small organic molecules, where it was referred to as molecular mechanics [4], and more recently to biological systems [2,3]. [Pg.7]

This workbook contains over 200 problems that will allow you to build and refine your understanding of chemistry from the molecule s eye view . This is achieved by basing every problem on a set of molecular models that you view and manipulate on your own personal computer. We believe that this combination of problems-i-models will improve your understanding of molecular structure and the relationship between molecular structure and other properties. More importantly, we believe that when you do the problems in this workbook you will gain a much better grasp of the conceptual basis of organic chemistry, and that this will make the rest of your study of organic chemistry more satisfactory and ultimately more successful. [Pg.1]

In order to fully appreciate the widespread application that molecular modeling can find in beginning organic chemistry, it is important to appreciate the fundamental relationship between molecular structure and chemical, physical and biological properties. So-called structure-property relationships are explored in nearly every college chemistry course, whether introductory or advanced. Students are first taught about the structures of molecules, and are then taught how to relate structure to molecular properties. [Pg.313]

We contend therefore that introduction of molecular modeling very early into the currieulum need not complicate or eonfuse the learning of organie chemistry, but rather assist the student in visualizing the structures of organic molecules and in learning the intimate connections between molecular structure and molecular properties. [Pg.314]

Given the specific, internuclear dipole-dipole contribution terms, p,y, or the cross-relaxation terms, determined by the methods just described, internuclear distances, r , can be calculated according to Eq. 30, assuming isotropic motion in the extreme narrowing region. The values for T<.(y) can be readily estimated from carbon-13 or deuterium spin-lattice relaxation-times. For most organic molecules in solution, carbon-13 / , values conveniently provide the motional information necessary, and, hence, the type of relaxation model to be used, for a pertinent description of molecular reorientations. A prerequisite to this treatment is the assumption that interproton vectors and C- H vectors are characterized by the same rotational correlation-time. For rotational isotropic motion, internuclear distances can be compared according to... [Pg.137]

The n molecular orbitals described so far involve two atoms, so the orbital pictures look the same for the localized bonding model applied to ethylene and the MO approach applied to molecular oxygen. In the organic molecules described in the introduction to this chapter, however, orbitals spread over three or more atoms. Such delocalized n orbitals can form when more than two p orbitals overlap in the appropriate geometry. In this section, we develop a molecular orbital description for three-atom n systems. In the following sections, we apply the results to larger molecules. [Pg.706]

The authors chose pyruvic acid as their model compound this C3 molecule plays a central role in the metabolism of living cells. It was recently synthesized for the first time under hydrothermal conditions (Cody et al., 2000). Hazen and Deamer carried out their experiments at pressures and temperatures similar to those in hydrothermal systems (but not chosen to simulate such systems). The non-enzymatic reactions, which took place in relatively concentrated aqueous solutions, were intended to identify the subsequent self-selection and self-organisation potential of prebiotic molecular species. A considerable series of complex organic molecules was tentatively identified, such as methoxy- or methyl-substituted methyl benzoates or 2, 3, 4-trimethyl-2-cyclopenten-l-one, to name only a few. In particular, polymerisation products of pyruvic acid, and products of consecutive reactions such as decarboxylation and cycloaddition, were observed the expected tar fraction was not found, but water-soluble components were found as well as a chloroform-soluble fraction. The latter showed similarities to chloroform-soluble compounds from the Murchison carbonaceous chondrite (Hazen and Deamer, 2007). [Pg.190]


See other pages where Molecular modeling organic molecules is mentioned: [Pg.2]    [Pg.96]    [Pg.111]    [Pg.305]    [Pg.268]    [Pg.275]    [Pg.381]    [Pg.100]    [Pg.254]    [Pg.505]    [Pg.284]    [Pg.296]    [Pg.341]    [Pg.4]    [Pg.82]    [Pg.111]    [Pg.1261]    [Pg.158]    [Pg.162]    [Pg.67]    [Pg.28]    [Pg.82]    [Pg.111]    [Pg.1261]    [Pg.314]    [Pg.12]    [Pg.827]    [Pg.43]    [Pg.48]    [Pg.143]    [Pg.198]    [Pg.380]    [Pg.87]    [Pg.117]    [Pg.204]    [Pg.19]    [Pg.10]    [Pg.75]    [Pg.109]   
See also in sourсe #XX -- [ Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 ]




SEARCH



Model organism

Modelling organic molecules

Molecular organic molecules

Molecules modeling

Molecules organization

Organic modeling

Organization molecular

The Sizes and Shapes of Organic Molecules. Molecular Models

© 2024 chempedia.info