Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular function theory

Molecular dynamics and density functional theory studies (see Section IX-2) of the Lennard-Jones 6-12 system determine the interfacial tension for the solid-liquid and solid-vapor interfaces [47-49]. The dimensionless interfacial tension ya /kT, where a is the Lennard-Jones molecular size, increases from about 0.83 for the solid-liquid interface to 2.38 for the solid-vapor at the triple point [49], reflecting the large energy associated with a solid-vapor interface. [Pg.267]

Car R and Parrinello M 1985 Unified approach for molecular dynamics and density functional theory Phys. Rev. Lett. 55 2471... [Pg.2358]

Highest occupied molecular orbital Intermediate neglect of differential overlap Linear combination of atomic orbitals Local density approximation Local spin density functional theory Lowest unoccupied molecular orbital Many-body perturbation theory Modified INDO version 3 Modified neglect of diatomic overlap Molecular orbital Moller-Plesset... [Pg.124]

Car R and M Parrinello 1985. Unified Approach for Molecular Dynamics and Density Functional Theory. Physical Review Letters 55 2471-2474. [Pg.650]

A basis set is a set of functions used to describe the shape of the orbitals in an atom. Molecular orbitals and entire wave functions are created by taking linear combinations of basis functions and angular functions. Most semiempirical methods use a predehned basis set. When ah initio or density functional theory calculations are done, a basis set must be specihed. Although it is possible to create a basis set from scratch, most calculations are done using existing basis sets. The type of calculation performed and basis set chosen are the two biggest factors in determining the accuracy of results. This chapter discusses these standard basis sets and how to choose an appropriate one. [Pg.78]

Valence bond and molecular orbital theory both incorporate the wave description of an atom s electrons into this picture of H2 but m somewhat different ways Both assume that electron waves behave like more familiar waves such as sound and light waves One important property of waves is called interference m physics Constructive interference occurs when two waves combine so as to reinforce each other (m phase) destructive interference occurs when they oppose each other (out of phase) (Figure 2 2) Recall from Section 1 1 that electron waves m atoms are characterized by their wave function which is the same as an orbital For an electron m the most stable state of a hydrogen atom for example this state is defined by the Is wave function and is often called the Is orbital The valence bond model bases the connection between two atoms on the overlap between half filled orbifals of fhe fwo afoms The molecular orbital model assembles a sef of molecular orbifals by combining fhe afomic orbifals of all of fhe atoms m fhe molecule... [Pg.59]

A Kuki, PG Wolynes. Electron tunneling paths in proteins. Science 236 1647-1652, 1987. T Ziegler. Approximate density functional theory as a practical tool m molecular energetics and dynamics. Chem Rev 91 651-667, 1991. [Pg.411]

Another approach to calculating molecular geometry and energy is based on density functional theory (DFT). DFT focuses on the electron cloud corresponding to a molecule. The energy of a molecule is uniquely specified by the electron density functional. The calculation involves the construction of an expression for the electron density. The energy of the system is then expressed as... [Pg.59]

In 1985 Car and Parrinello invented a method [111-113] in which molecular dynamics (MD) methods are combined with first-principles computations such that the interatomic forces due to the electronic degrees of freedom are computed by density functional theory [114-116] and the statistical properties by the MD method. This method and related ab initio simulations have been successfully applied to carbon [117], silicon [118-120], copper [121], surface reconstruction [122-128], atomic clusters [129-133], molecular crystals [134], the epitaxial growth of metals [135-140], and many other systems for a review see Ref. 113. [Pg.82]

As a final note, be aware that Hartree-Fock calculations performed with small basis sets are many times more prone to finding unstable SCF solutions than are larger calculations. Sometimes this is a result of spin contamination in other cases, the neglect of electron correlation is at the root. The same molecular system may or may not lead to an instability when it is modeled with a larger basis set or a more accurate method such as Density Functional Theory. Nevertheless, wavefunctions should still be checked for stability with the SCF=Stable option. ... [Pg.36]

Molecular frequencies depend on the second derivative of the energy with respect to the nuclear positions. Analytic second derivatives are available for the Hartree-Fock (HF keyword). Density Functional Theory (primarily the B3LYP keyword in this book), second-order Moller-Plesset (MP2 keyword) and CASSCF (CASSCF keyword) theoretical procedures. Numeric second derivatives—which are much more time consuming—are available for other methods. [Pg.61]

In the last few years, methods based on Density Functional Theory have gained steadily in popularity. The best DFT methods achieve significantly greater accuracy than Harttee-Fock theory at only a modest increase in cost (far less than MP2 for medium-size and larger molecular systems). They do so by including some of the effects of electron correlation much less expensively than traditional correlated methods. [Pg.118]

Ab initio molecular orbital theory is concerned with predicting the properties of atomic and molecular systems. It is based upon the fundamental laws of quantum mechanics and uses a variety of mathematical transformation and approximation techniques to solve the fundamental equations. This appendix provides an introductory overview of the theory underlying ab initio electronic structure methods. The final section provides a similar overview of the theory underlying Density Functional Theory methods. [Pg.253]

It is important to realize that whenever qualitative or frontier molecular orbital theory is invoked, the description is within the orbital (Hartree-Fock or Density Functional) model for the electronic wave function. In other words, rationalizing a trend in computational results by qualitative MO theory is only valid if the effect is present at the HF or DFT level. If the majority of the variation is due to electron correlation, an explanation in terms of interacting orbitals is not appropriate. [Pg.355]

The ab initio methods used by most investigators include Hartree-Fock (FFF) and Density Functional Theory (DFT) [6, 7]. An ab initio method typically uses one of many basis sets for the solution of a particular problem. These basis sets are discussed in considerable detail in references [1] and [8]. DFT is based on the proof that the ground state electronic energy is determined completely by the electron density [9]. Thus, there is a direct relationship between electron density and the energy of a system. DFT calculations are extremely popular, as they provide reliable molecular structures and are considerably faster than FFF methods where correlation corrections (MP2) are included. Although intermolecular interactions in ion-pairs are dominated by dispersion interactions, DFT (B3LYP) theory lacks this term [10-14]. FFowever, DFT theory is quite successful in representing molecular structure, which is usually a primary concern. [Pg.153]


See other pages where Molecular function theory is mentioned: [Pg.442]    [Pg.638]    [Pg.4]    [Pg.376]    [Pg.389]    [Pg.389]    [Pg.11]    [Pg.46]    [Pg.154]    [Pg.157]    [Pg.180]    [Pg.258]    [Pg.626]    [Pg.631]    [Pg.635]    [Pg.195]    [Pg.162]    [Pg.7]    [Pg.223]    [Pg.359]    [Pg.211]    [Pg.757]    [Pg.44]    [Pg.297]    [Pg.322]    [Pg.324]    [Pg.353]    [Pg.3]   
See also in sourсe #XX -- [ Pg.172 , Pg.173 , Pg.174 , Pg.175 ]




SEARCH



Molecular functionality

© 2024 chempedia.info