Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics simulation modelling

The unique features of our system enable us to use three different theoretical tools — a molecular dynamics simulation, models which focus on the repulsion between atoms and a statistical approach, based on an information theory analysis. What enables us to use a thermodynamic-like language under the seemingly extreme nonequilibrium conditions are the high density, very high energy density and the hard sphere character of the atom-atom collisions, that contribute to an unusually rapid thermalization. These conditions lead to short-range repulsive interactions and therefore enable us to use the kinematic point of view in a useful way. [Pg.28]

The most detailed molecular dynamics simulation technique is the ab-initio (quantum) molecular dynamics simulation approach that explicitly models the electrons of the particles within the system. Whereas, force-field molecular dynamics simulations model the nuclear interactions of the particles within the system, and therefore do not explicitly model each electron. Then the method that incorporates the least amount of detail is that of coarse grain molecular dynamics models where multiple particles are grouped together before being represented by a single interaction bead. ... [Pg.197]

Small metal clusters are also of interest because of their importance in catalysis. Despite the fact that small clusters should consist of mostly surface atoms, measurement of the photon ionization threshold for Hg clusters suggest that a transition from van der Waals to metallic properties occurs in the range of 20-70 atoms per cluster [88] and near-bulk magnetic properties are expected for Ni, Pd, and Pt clusters of only 13 atoms [89] Theoretical calculations on Sin and other semiconductors predict that the stmcture reflects the bulk lattice for 1000 atoms but the bulk electronic wave functions are not obtained [90]. Bartell and co-workers [91] study beams of molecular clusters with electron dirfraction and molecular dynamics simulations and find new phases not observed in the bulk. Bulk models appear to be valid for their clusters of several thousand atoms (see Section IX-3). [Pg.270]

Bartell and co-workers have made significant progress by combining electron diffraction studies from beams of molecular clusters with molecular dynamics simulations [14, 51, 52]. Due to their small volumes, deep supercoolings can be attained in cluster beams however, the temperature is not easily controlled. The rapid nucleation that ensues can produce new phases not observed in the bulk [14]. Despite the concern about the appropriateness of the classic model for small clusters, its application appears to be valid in several cases [51]. [Pg.337]

Specific solute-solvent interactions involving the first solvation shell only can be treated in detail by discrete solvent models. The various approaches like point charge models, siipennoleciilar calculations, quantum theories of reactions in solution, and their implementations in Monte Carlo methods and molecular dynamics simulations like the Car-Parrinello method are discussed elsewhere in this encyclopedia. Here only some points will be briefly mentioned that seem of relevance for later sections. [Pg.839]

Predicting the solvent or density dependence of rate constants by equation (A3.6.29) or equation (A3.6.31) requires the same ingredients as the calculation of TST rate constants plus an estimate of and a suitable model for the friction coefficient y and its density dependence. While in the framework of molecular dynamics simulations it may be worthwhile to numerically calculate friction coefficients from the average of the relevant time correlation fiinctions, for practical purposes in the analysis of kinetic data it is much more convenient and instructive to use experimentally detemiined macroscopic solvent parameters. [Pg.849]

Wilson M R 1997 Molecular dynamics simulations of flexible liquid crystal molecules using a Gay-Berne/Lennard-Jones model J. Chem. Phys. 107 8654-63... [Pg.2280]

Juffer, A.H., Berendsen, H.J.C. Dynamic surface boundary conditions A simple boundary model for molecular dynamics simulations. Mol. Phys. 79 (1993) 623-644. [Pg.29]

Hayward, S., Kitao, A., Berendsen, H.J.C. Model-free methods to analyze domain motions in proteins from simulation A comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins 27 (1997) 425-437. [Pg.35]

The explicit definition of water molecules seems to be the best way to represent the bulk properties of the solvent correctly. If only a thin layer of explicitly defined solvent molecules is used (due to hmited computational resources), difficulties may rise to reproduce the bulk behavior of water, especially near the border with the vacuum. Even with the definition of a full solvent environment the results depend on the model used for this purpose. In the relative simple case of TIP3P and SPC, which are widely and successfully used, the atoms of the water molecule have fixed charges and fixed relative orientation. Even without internal motions and the charge polarization ability, TIP3P reproduces the bulk properties of water quite well. For a further discussion of other available solvent models, readers are referred to Chapter VII, Section 1.3.2 of the Handbook. Unfortunately, the more sophisticated the water models are (to reproduce the physical properties and thermodynamics of this outstanding solvent correctly), the more impractical they are for being used within molecular dynamics simulations. [Pg.366]

How can we apply molecular dynamics simulations practically. This section gives a brief outline of a typical MD scenario. Imagine that you are interested in the response of a protein to changes in the amino add sequence, i.e., to point mutations. In this case, it is appropriate to divide the analysis into a static and a dynamic part. What we need first is a reference system, because it is advisable to base the interpretation of the calculated data on changes compared with other simulations. By taking this relative point of view, one hopes that possible errors introduced due to the assumptions and simplifications within the potential energy function may cancel out. All kinds of simulations, analyses, etc., should always be carried out for the reference and the model systems, applying the same simulation protocols. [Pg.369]

The greatest value of molecular dynamic simulations is that they complement and help to explain existing data for designing new experim en ts. Th e sun ulation s are in creasin gly n sefn I for stnictural relinemcnt of models generated from XMR, distance geometry, an d X-ray data. [Pg.10]

TIte NCC water model. (After Corongiu G 1992. Molecular Dynamics Simulation fir Liquid Water Using risable and Flexible Potential. International Journal of Quantum Chemistry 42 1209-1235.)... [Pg.238]

The first molecular dynamics simulation of a condensed phase system was performed by Alder and Wainwright in 1957 using a hard-sphere model [Alder and Wainwright 1957]. In this model, the spheres move at constant velocity in straight lines between collisions. All collisions are perfectly elastic and occur when the separation between the centres of... [Pg.367]

The first molecular dynamics simulations of a lipid bilayer which used an explicit representation of all the molecules was performed by van der Ploeg and Berendsen in 1982 [van dei Ploeg and Berendsen 1982]. Their simulation contained 32 decanoate molecules arranged in two layers of sixteen molecules each. Periodic boundary conditions were employed and a xmited atom force potential was used to model the interactions. The head groups were restrained using a harmonic potential of the form ... [Pg.415]


See other pages where Molecular dynamics simulation modelling is mentioned: [Pg.618]    [Pg.308]    [Pg.141]    [Pg.618]    [Pg.308]    [Pg.141]    [Pg.482]    [Pg.852]    [Pg.862]    [Pg.890]    [Pg.2382]    [Pg.2538]    [Pg.2589]    [Pg.2589]    [Pg.131]    [Pg.132]    [Pg.163]    [Pg.330]    [Pg.434]    [Pg.499]    [Pg.352]    [Pg.429]    [Pg.213]    [Pg.219]    [Pg.296]    [Pg.319]    [Pg.338]    [Pg.384]    [Pg.390]    [Pg.393]    [Pg.416]    [Pg.468]    [Pg.532]    [Pg.534]    [Pg.635]    [Pg.636]    [Pg.644]    [Pg.654]   
See also in sourсe #XX -- [ Pg.97 , Pg.98 ]




SEARCH



Biological enzyme modeling molecular dynamics simulations

Dynamic Simulation Models

Dynamic simulation

Dynamical simulations

Exponential model molecular dynamics simulation

Model dynamical molecular

Molecular Dynamics Simulation

Molecular dynamic models

Molecular dynamics modeling

Molecular dynamics modelling

Molecular dynamics simulation bead-spring model

Molecular dynamics simulation explicit solvent models

Molecular dynamics simulation models

Molecular dynamics simulation models

Molecular dynamics simulation simple models

Molecular dynamics simulations implicit solvation model

Molecular modeling energy minimization, dynamics simulation

Molecular modelling dynamic simulation models

Molecular modelling dynamic simulation models

Molecular simulations

Simulant modeling

Simulated model

Simulated modeling

Solvent Models in Molecular Dynamics Simulations A Brief Overview

© 2024 chempedia.info