Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics interaction potential

The impact of computer modeling on development in the field is increasing. Databases store all possible tetrahedral frameworks. More detailed analyses allow for the optimization of the host-guest interaction for the synthesis of new materials. Finally, molecular dynamic calculations potentially show the molecular details of the nucleation and crystallization of micropoi-ous crystals. This article lists the most important geometric and crystallographic properties, points out possible applications of microporous silicas, summarizes the recent developments and presents ideas for future progress in the field. [Pg.380]

The theoretical treatments of Section III-2B have been used to calculate interfacial tensions of solutions using suitable interaction potential functions. Thus Gubbins and co-workers [88] report a molecular dynamics calculation of the surface tension of a solution of A and B molecules obeying Eq. III-46 with o,bb/ o,aa = 0.4 and... [Pg.67]

Molecular dynamics consists of the brute-force solution of Newton s equations of motion. It is necessary to encode in the program the potential energy and force law of interaction between molecules the equations of motion are solved numerically, by finite difference techniques. The system evolution corresponds closely to what happens in real life and allows us to calculate dynamical properties, as well as thennodynamic and structural fiinctions. For a range of molecular models, packaged routines are available, either connnercially or tlirough the academic conmuinity. [Pg.2241]

The parameter /r tunes the stiffness of the potential. It is chosen such that the repulsive part of the Leimard-Jones potential makes a crossing of bonds highly improbable (e.g., k= 30). This off-lattice model has a rather realistic equation of state and reproduces many experimental features of polymer solutions. Due to the attractive interactions the model exhibits a liquid-vapour coexistence, and an isolated chain undergoes a transition from a self-avoiding walk at high temperatures to a collapsed globule at low temperatures. Since all interactions are continuous, the model is tractable by Monte Carlo simulations as well as by molecular dynamics. Generalizations of the Leimard-Jones potential to anisotropic pair interactions are available e.g., the Gay-Beme potential [29]. This latter potential has been employed to study non-spherical particles that possibly fomi liquid crystalline phases. [Pg.2366]

The most important molecular interactions of all are those that take place in liquid water. For many years, chemists have worked to model liquid water, using molecular dynamics and Monte Carlo simulations. Until relatively recently, however, all such work was done using effective potentials [4T], designed to reproduce the condensed-phase properties but with no serious claim to represent the tme interactions between a pair of water molecules. [Pg.2449]

The method of molecular dynamics (MD), described earlier in this book, is a powerful approach for simulating the dynamics and predicting the rates of chemical reactions. In the MD approach most commonly used, the potential of interaction is specified between atoms participating in the reaction, and the time evolution of their positions is obtained by solving Hamilton s equations for the classical motions of the nuclei. Because MD simulations of etching reactions must include a significant number of atoms from the substrate as well as the gaseous etchant species, the calculations become computationally intensive, and the time scale of the simulation is limited to the... [Pg.2936]

Molecular dynamics conceptually involves two phases, namely, the force calculations and the numerical integration of the equations of motion. In the first phase, force interactions among particles based on the negative gradient of the potential energy function U,... [Pg.484]

Finite difference techniques are used to generate molecular dynamics trajectories with continuous potential models, which we will assume to be pairwise additive. The essential idea is that the integration is broken down into many small stages, each separated in time by a fixed time 6t. The total force on each particle in the configuration at a time t is calculated as the vector sum of its interactions with other particles. From the force we can determine the accelerations of the particles, which are then combined with the positions and velocities at a time t to calculate the positions and velocities at a time t + 6t. The force is assumed to be constant during the time step. The forces on the particles in their new positions are then determined, leading to new positions and velocities at time t - - 2St, and so on. [Pg.369]

The first molecular dynamics simulations of a lipid bilayer which used an explicit representation of all the molecules was performed by van der Ploeg and Berendsen in 1982 [van dei Ploeg and Berendsen 1982]. Their simulation contained 32 decanoate molecules arranged in two layers of sixteen molecules each. Periodic boundary conditions were employed and a xmited atom force potential was used to model the interactions. The head groups were restrained using a harmonic potential of the form ... [Pg.415]

Mesoscale simulations model a material as a collection of units, called beads. Each bead might represent a substructure, molecule, monomer, micelle, micro-crystalline domain, solid particle, or an arbitrary region of a fluid. Multiple beads might be connected, typically by a harmonic potential, in order to model a polymer. A simulation is then conducted in which there is an interaction potential between beads and sometimes dynamical equations of motion. This is very hard to do with extremely large molecular dynamics calculations because they would have to be very accurate to correctly reflect the small free energy differences between microstates. There are algorithms for determining an appropriate bead size from molecular dynamics and Monte Carlo simulations. [Pg.273]

Molecular mechanics methods have been used particularly for simulating surface-liquid interactions. Molecular mechanics calculations are called effective potential function calculations in the solid-state literature. Monte Carlo methods are useful for determining what orientation the solvent will take near a surface. Molecular dynamics can be used to model surface reactions and adsorption if the force held is parameterized correctly. [Pg.319]

In principle, we could find the minimum-energy crystal lattice from electronic structure calculations, determine the appropriate A-body interaction potential in the presence of lattice defects, and use molecular dynamics methods to calculate ab initio dynamic macroscale material properties. Some of the problems associated with this approach are considered by Wallace [1]. Because of these problems it is useful to establish a bridge between the micro-... [Pg.218]

Despite their simplicity, certainly compared to the all-atom potentials used in molecular dynamics studies, these contact energy functions enable the exploration of different interaction scenarios. This diversity is achieved by changing the heterogeneity of the sequence, by altering the number N of different types of residues that are being used. The most elementary lattice model involves only two types of monomers hydrophobic... [Pg.377]

Interatomic potentials. All molecular dynamics simulations and some MC simulations depend on the form of the interaction between pairs of particles (atoms... [Pg.471]

The MYD analysis assumes that the atoms do not move as a result of the interaetion potential. The eonsequenees of this assumption have recently been examined by Quesnel and coworkers [50-55], who used molecular dynamic modeling techniques to simulate the adhesion and release of 2-dimensional particles from 2-D substrates. Specifically, both the Quesnel and MYD models assume that the atoms in the different materials interact via a Lennard-Jones potential

[Pg.153]

The only feasible procedure at the moment is molecular dynamics computer simulation, which can be used since most systems are currently essentially controlled by classical dynamics even though the intermolecular potentials are often quantum mechanical in origin. There are indeed many intermolecular potentials available which are remarkably reliable for most liquids, and even for liquid mixtures, of scientific and technical importance. However potentials for the design of membranes and of the interaction of fluid molecules with membranes on the atomic scale are less well developed. [Pg.794]


See other pages where Molecular dynamics interaction potential is mentioned: [Pg.200]    [Pg.181]    [Pg.370]    [Pg.244]    [Pg.467]    [Pg.595]    [Pg.902]    [Pg.2382]    [Pg.2645]    [Pg.27]    [Pg.73]    [Pg.297]    [Pg.366]    [Pg.443]    [Pg.499]    [Pg.362]    [Pg.338]    [Pg.369]    [Pg.384]    [Pg.408]    [Pg.1504]    [Pg.104]    [Pg.159]    [Pg.397]    [Pg.401]    [Pg.154]    [Pg.187]    [Pg.348]    [Pg.640]    [Pg.757]    [Pg.67]    [Pg.330]    [Pg.232]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Dynamical interaction

Dynamics Potential

Molecular dynamics interactions

Molecular interactions

Molecular interactive

Molecular potential

© 2024 chempedia.info