Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model Schiff Bases

Table 10 includes the results for skin irritation. No clear results have been obtained. All models are in agreement only for the absence of irritative potential of BDE 100. Multiple results from ToxTree are due to the five different alerts used by the model (Schiff base formation, SNAr, Acyl transfer agent, skin sensitization, and Michael acceptor). A global evaluation of ToxTree data could suggest that all the analyzed compounds are not able to induce skin sensitization. These predictions are in clear contrast with that obtained by applying CAESAR and in partial agreement with the results of Toxsuite. [Pg.198]

Early experiments with bacteriorhodopsin (228) interpreted the Raman spectrum in terms of an unprotonated Schiff base, forming a charge-transfer complex with a protein functional group (210,212). This interpretation of the Raman data, essentially based on a comparison with the frequencies of model Schiff bases in solution, was criticized by Honig and Ebrey (48), who pointed out that consistency could also be obtained with a protonated Schiff base model. The latter hypothesis was subsequently confirmed by deuteration experiments similar to those described for rhodopsin (229,230), and by Raman spectra in denatured systems (231). In variance with the clear-cut similarity observed between the resonance-Raman spectra of rhodopsin and isorhodopsin, and those of the 11-cis and 9-cis model compounds, respectively,... [Pg.134]

Figure 6. Resonance-Raman spectra of bovine rhodopsin and its photoproducts, compared with those of model Schiff bases of retinal in solution. (Adapted from ref. 219 and based on data from refs. 222, 315, 323, and 224.)... Figure 6. Resonance-Raman spectra of bovine rhodopsin and its photoproducts, compared with those of model Schiff bases of retinal in solution. (Adapted from ref. 219 and based on data from refs. 222, 315, 323, and 224.)...
Figure 14.31 Effect of an intramolecular hydrogen bond to a carboxylic group on the tautomerism of a model Schiff base according to [85]. Figure 14.31 Effect of an intramolecular hydrogen bond to a carboxylic group on the tautomerism of a model Schiff base according to [85].
Scheller reaction Schercamox DML Schercamox DMM Schercomid Schercomid CME Schercotaine Schereowet Scher-Montroll model Schetty-Pfeiffer ligands Schiff base Schiff bases... [Pg.872]

Figure 26.7 Model vitamin Bn compounds (a) a Schiff base derivative, and (b) a cobal-oxime, in this case derived from dimethylglyoxime. Figure 26.7 Model vitamin Bn compounds (a) a Schiff base derivative, and (b) a cobal-oxime, in this case derived from dimethylglyoxime.
The reductions are effected in nature by ferredoxin (p. 1102). This behaviour can be reproduced surprisingly well by simpler, model compounds. Some of the best known of these are obtained by the addition of axial groups to the square-planar complexes of Co with Schiff bases, or substituted glyoximes (giving cobaloximes) as illustrated in Fig. 26.7. The reduced Co species of these, along with vitamin... [Pg.1139]

X-ray diffraction analysis of crystalline poly(schiff base)s and their low molecular models shows that the formation of molecular complexes is accompanied by an increase in interplanar distances and, in a number of cases, by complete amor-phization. Molecular complexes of poly(schiff base)s with Br2 decompose with time, because of the bromination of the donor components, forming C—Br bonds. Substitution of hydrogen by bromine in phenyl groups occurs only in cases in which these groups are not included into the main polymeric chain. [Pg.34]

Figure 2-3. Protonated Schiff-base of retinal (PSBR) and computational models used in ONIOM QM QM calculations (left). Electrostatic effects of the surrounding protein on excitation energies in bacteriorhodopsin evaluated using TD-B3LYP Amber right). (Adapted from Vreven and Morokuma [37] (Copyright American Institute of Physics) and Vreven et al. [38], Reprinted with permission.)... Figure 2-3. Protonated Schiff-base of retinal (PSBR) and computational models used in ONIOM QM QM calculations (left). Electrostatic effects of the surrounding protein on excitation energies in bacteriorhodopsin evaluated using TD-B3LYP Amber right). (Adapted from Vreven and Morokuma [37] (Copyright American Institute of Physics) and Vreven et al. [38], Reprinted with permission.)...
The CoIII-alkyl bond was established some time ago with the characterization of simple complexes with Co—CH3 or other Co—R groups. Incorporation of R as an axial ligand in Co111 porphyrins, Schiff base and bis(dimethylgloximato) compounds were early types defined, and examples continue to appear. This is a key feature of cobalamin (B12) model complexes and a review of this area appears in Section 6.1.3.1.1. The deceptively simple isoelectronic alkyl homologs of [Co(NH3)6]3+ and [Co(en)3]3+, (122)531 and (123), have appeared since the first edition of... [Pg.56]

There are many biomimetic model Co complexes of the cobalamins.1149 The primary criterion for an effective B12 model has been that the complex may be reduced to the monovalent state and undergo facile oxidative addition to generate a stable alkylcobalt(III) complex. The two main classes of B12 model complexes that have been investigated are Co oximes and Schiff base complexes. The former class shares the planar CoN4 array of their biological analogs whereas the majority of effective Schiff base Bi2 model complexes comprise equatorial czj-N202 donor sets. [Pg.103]

Heyde, M.E., Gill, D., Kilponen, R.G., and Rimai, L. 1971. Raman spectra of Schiff bases of retinal (models of visual photoreceptors J. Am. Chem. Soc. 93 6776-6780. [Pg.134]

The optically active Schiff bases containing intramolecular hydrogen bonds are of major interest because of their use as ligands for complexes employed as catalysts in enantioselective reactions or model compounds in studies of enzymatic reactions. In the studies of intramolecularly hydrogen bonded Schiff bases, the NMR spectroscopy is widely used and allows detection of the presence of proton transfer equilibrium and determination of the mole fraction of tautomers [21]. Literature gives a few names of tautomers in equilibrium. The OH-tautomer has been also known as OH-, enol- or imine-form, while NH tautomer as NH-, keto-, enamine-, or proton-transferred form. More detail information concerning the application of NMR spectroscopy for investigation of proton transfer equilibrium in Schiff bases is presented in reviews.42-44... [Pg.144]

Rhodopsin is a seven ot-helix trans-membrane protein and visual pigment of the vertebrate rod photoreceptor cells that mediate dim light vision. In this photoreceptor, retinal is the chromophore bound by opsin protein, covalently linked to Lys296 by a Schiff base linkage. Kpega et al.64 have studied NMR spectra of Schiff bases being derivatives of all-frans retinal and amino-p-cyclodextrins as a model of rhodopsin, where p-cyclodextrin plays a role of a binding pocket. On the basis of analysis of the chemical shift differences for the model compound in the presence and in the absence of adamantane carboxylate, it has been shown that the derivative of 3-amino-p-cyclodextrin forms dimer in water and retinoid is inserted into p-cyclodextrin cavity [31]. [Pg.155]

For 10-fold 13C labelled retinal, it has been shown that the differences between chemical shifts for polyene chain carbons of the chromophore in its native environment and detergent-solubilised system were small67 Analysis of the environment of the Schiff base has supported the model of stabilisation based on the protonation by a complex counterion. Three factors were responsible for the excessive positive charge in polyene (i) electronegative nitrogen, (ii) protonation and (iii) counterion strength. [Pg.156]

The values of the 15N CP MAS chemical shift of Lys296 nitrogen bonded to retinal via the —C=N bond ( Schiff base) was equal to 155.4 ppm for rhodopsin and 282.8 ppm for metarhodopsin (relative to 5.6 M aqueous NH4C1).70 The results proved the imine bond polarisation, which facilitates Schiff base hydrolysis. The comparison between chemical shifts for metarhodopsin and model compounds suggested that Schiff base linkage of the all-frans retinal chromophore in Metall is in a polar environment. [Pg.158]

Certain Schiff bases, i.e. 122, were synthesized as model compounds for Latia luciferin. This compound exhibits strong blue chemiluminescence ( max 385 nm) on oxidation with oxygen in DMSO/potassium t.-butylate, the main products being acetone and 2-formamido pyridine 124. The mechanism suggested by Me Capra and Wrigglesworth includes the concerted bond cleavage of a dioxetane derivative 123. [Pg.128]


See other pages where Model Schiff Bases is mentioned: [Pg.178]    [Pg.359]    [Pg.371]    [Pg.178]    [Pg.359]    [Pg.371]    [Pg.309]    [Pg.115]    [Pg.258]    [Pg.394]    [Pg.87]    [Pg.84]    [Pg.33]    [Pg.103]    [Pg.115]    [Pg.296]    [Pg.346]    [Pg.364]    [Pg.846]    [Pg.847]    [Pg.1165]    [Pg.55]    [Pg.136]    [Pg.156]    [Pg.334]    [Pg.464]    [Pg.150]    [Pg.14]    [Pg.177]    [Pg.193]    [Pg.408]    [Pg.70]    [Pg.151]    [Pg.211]   


SEARCH



© 2024 chempedia.info