Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfaces, thermodynamics mixtures

The presence of a thermodynamically incompatible polysaccharide in the aqueous phase can enhance the effective protein emulsifying capacity. The greater surface activity of the protein in the mixed biopolymer system facilitates the creation of smaller emulsion droplets, i.e., an increase in total surface area of the freshly prepared emulsion stabilized by the mixture of thermodynamically incompatible biopolymers (see Figure 3.4) (Dickinson and Semenova, 1992 Semenova el al., 1999a Tsapkina et al., 1992 Makri et al., 2005). It should be noted, however, that some hydrocolloids do cause a reduction in the protein emulsifying capacity by reducing the protein adsorption efficiency as a result of viscosity effects. [Pg.245]

Within this context, this chapter discusses the possibilities to produce surface patterns by surface segregation of an additive towards the interface in polymer blends. Surface segregation is the result of the preferential migration of one blend component to the interface thereby inducing selective enrichment at the nearsurface level. As will be discussed below in detail, this effect is directed by the surface thermodynamics that favors the presence at the interface of the component of a mixture lowering the surface tension. As a consequence, this phenomenon is the cause of having large differences between the surface and the bulk composition. [Pg.100]

When a PV membrane is in contact with a liquid mixture, the thermodynamic equilibrium reaches instantly at the membrane-feed surface. [Pg.264]

Basic thermodynamics, statisticai thermodynamics, third-iaw entropies, phase transitions, mixtures and soiutions, eiectrochemicai systems, surfaces, gravitation, eiectrostatic and magnetic fieids. (in some ways the 3rd and 4th editions (1957 and 1960) are preferabie, being iess idiosyncratic.)... [Pg.377]

Many simple systems that could be expected to form ideal Hquid mixtures are reasonably predicted by extending pure-species adsorption equiUbrium data to a multicomponent equation. The potential theory has been extended to binary mixtures of several hydrocarbons on activated carbon by assuming an ideal mixture (99) and to hydrocarbons on activated carbon and carbon molecular sieves, and to O2 and N2 on 5A and lOX zeoHtes (100). Mixture isotherms predicted by lAST agree with experimental data for methane + ethane and for ethylene + CO2 on activated carbon, and for CO + O2 and for propane + propylene on siUca gel (36). A statistical thermodynamic model has been successfully appHed to equiUbrium isotherms of several nonpolar species on 5A zeoHte, to predict multicomponent sorption equiUbria from the Henry constants for the pure components (26). A set of equations that incorporate surface heterogeneity into the lAST model provides a means for predicting multicomponent equiUbria, but the agreement is only good up to 50% surface saturation (9). [Pg.285]

The thermodynamic phase stability diagrams appear to be preferred by corrosion scientists and technologists for the evaluation of gas-metal systems where the chemical composition of the gaseous phase consisting of a single gas or mixture of gases has a critical influence on the formation of surface reaction products which, in turn, may either stifle or accelerate the rate of corrosion. Also, they are used to analyse or predict the reason for the sequence of formation of the phases in a multi-layered surface reaction product on a metal or alloy. [Pg.1094]

The simplest case to be analyzed is the process in which the rate of one of the adsorption or desorption steps is so slow that it becomes itself rate determining in overall transformation. The composition of the reaction mixture in the course of the reaction is then not determined by kinetic, but by thermodynamic factors, i.e. by equilibria of the fast steps, surface chemical reactions, and the other adsorption and desorption processes. Concentration dependencies of several types of consecutive and parallel (branched) catalytic reactions 52, 53) were calculated, corresponding to schemes (Ila) and (lib), assuming that they are controlled by the rate of adsorption of either of the reactants A and X, desorption of any of the products B, C, and Y, or by simultaneous desorption of compounds B and C. [Pg.13]

The industrial process for which this methodology was developed comprised polymerizing a monomer in the presence of a mixed solvent, the catalyst and other Ingredients. Once the batch polymerization is complete, the product requires removal of the solvents to a specified level. The solvents, an aromatic Cy and aliphatic Cy compounds, are removed by a two-step process schematically shown in Figure 1. As shown, the polymer slurry is initially flashed to a lower pressure (Pj ) in the presence of steam and water. The freely available solvent in the polymer-solvent mixture is removed by the shift in thermodynamic equilibrium. Solvent attached to the surface of the polymer particle is removed by the steam. In this first step, 90% of the total solvents are recovered. The remaining solvents are recovered in the second flash, where the effluent is almost all water with very low concentrations of the solvents. [Pg.99]

It follows from the second law of thermodynamics that the optimal free energy of a hydrocarbon-water mixture is a function of both maximal enthalpy (from hydrogen bonding) and minimum entropy (maximum degrees of freedom). Thus, nonpolar molecules tend to form droplets with minimal exposed surface area, reducing the number of water molecules affected. For the same reason, in the aqueous environment of the hving cell the hydrophobic portions of biopolymers tend to be buried inside the structure of the molecule, or within a lipid bilayer, minimizing contact with water. [Pg.7]

CO in the synthesis gas mixture for the methanol synthesis does not seem to take part directly in the reaction, but it does influence the process through two effects First the water-gas shift reaction and, secondly, through its effect on the surface morphology (and possibly also composition). For thermodynamic reasons, however, it would be desirable if CO could be hydrogenated directly via Eq (18) instead of going through two coupled equations (3) and (19), since it would yield a higher equilibrium concentration of methanol at the reactor exit. [Pg.319]

The two-phase mixture in the boundary layer near the heating surface can hardly be in thermodynamic equilibrium with the bulk stream. Thus, the magni-... [Pg.342]


See other pages where Surfaces, thermodynamics mixtures is mentioned: [Pg.529]    [Pg.102]    [Pg.710]    [Pg.64]    [Pg.67]    [Pg.136]    [Pg.202]    [Pg.202]    [Pg.102]    [Pg.794]    [Pg.1348]    [Pg.504]    [Pg.56]    [Pg.53]    [Pg.237]    [Pg.1504]    [Pg.22]    [Pg.102]    [Pg.53]    [Pg.130]    [Pg.464]    [Pg.395]    [Pg.18]    [Pg.3]    [Pg.258]    [Pg.396]    [Pg.397]    [Pg.12]    [Pg.129]    [Pg.669]    [Pg.268]    [Pg.134]    [Pg.583]    [Pg.451]    [Pg.3]    [Pg.118]   
See also in sourсe #XX -- [ Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 ]




SEARCH



Surface Thermodynamic

Surfaces, thermodynamics

Thermodynamics mixtures

© 2024 chempedia.info