Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixture fraction transport equation

The simulations of the two-phase flows in the microchannels can also be performed using the volume of fluid (VOF) method. In this case, a volume fraction transport equation is employed in addition to the continuity and momentum equations. Then the phases are treated as a homogeneous mixture. [Pg.328]

Note that when solving the CFD transport equations, the mean velocity and turbulence state variables can be found independently from the mixture-fraction state variables. Likewise, when validating the CFD model predictions, the velocity and turbulence predictions can be measured in separate experiments (e.g., using particle-image velocimetry [PIV]) from the scalar field (e.g., using planar laser-induced fluorescence [PLIF]). [Pg.246]

In theory, this model can be used to fix up to three moments of the mixture fraction (e.g., (c), ( 2), and (c3)). In practice, we want to choose the CFD transport equations such that the moments computed from Eqs. (34) and (35) are exactly the same as those found by solving Eqs. (28) and (29). An elegant mathematical procedure for forcing the moments to agree is the direct quadrature method of moments (DQMOM), and is described in detail in Fox (2003). For the two-environment model, the transport equations are... [Pg.249]

The acid-base reaction is a simple example of using the mixture fraction to express the reactant concentrations in the limit where the chemistry is much faster than the mixing time scales. This idea can be easily generalized to the case of multiple fast reactions, which is known as the equilibrium-chemistry limit. If we denote the vector of reactant concentrations by and assume that it obeys a transport equation of the form... [Pg.256]

The results shown in Figs. 6 and 7 can be combined to compute the mean mixture fraction ( ) and its variance (c2) from Eqs. (34) and (35), respectively. Example plots are shown in Liu and Fox (2006) and, as expected, they agree with the solution found by solving the moment transport equations directly (Eqs. 28 and 29). [Pg.266]

The example reactions considered in this section all have the property that the number of reactions is less than or equal to the number of chemical species. Thus, they are examples of so-called simple chemistry (Fox, 2003) for which it is always possible to rewrite the transport equations in terms of the mixture fraction and a set of reaction-progress variables where each reaction-progress variablereaction-progress variable —> depends on only one reaction. For chemical mechanisms where the number of reactions is larger than the number of species, it is still possible to decompose the concentration vector into three subspaces (i) conserved-constant scalars (whose values are null everywhere), (ii) a mixture-fraction vector, and (iii) a reaction-progress vector. Nevertheless, most commercial CFD codes do not use such decompositions and, instead, solve directly for the mass fractions of the chemical species. We will thus look next at methods for treating detailed chemistry expressed in terms of a set of elementary reaction steps, a thermodynamic database for the species, and chemical rate expressions for each reaction step (Fox, 2003). [Pg.266]

Equation (9.41) constitutes a fundamental solution for purely convective mass burning flux in a stagnant layer. Sorting through the S-Z transformation will allow us to obtain specific stagnant layer solutions for T and Yr However, the introduction of a new variable - the mixture fraction - will allow us to express these profiles in mixture fraction space where they are universal. They only require a spatial and temporal determination of the mixture fraction/. The mixture fraction is defined as the mass fraction of original fuel atoms. It is as if the fuel atoms are all painted red in their evolved state, and as they are transported and chemically recombined, we track their mass relative to the gas phase mixture mass. Since these fuel atoms cannot be destroyed, the governing equation for their mass conservation must be... [Pg.243]

In developing closures for the chemical source term and the PDF transport equation, we will also come across conditional moments of the derivatives of a field conditioned on the value of the field. For example, in conditional-moment closures, we must provide a functional form for the scalar dissipation rate conditioned on the mixture fraction, i.e.,... [Pg.88]

In this case, if the boundary and initial conditions allow it, either ej or c can be used to define the mixture fraction. The number of conserved scalar transport equations that must be solved then reduces to one. In general, depending on the initial conditions, it may be possible to reduce the number of conserved scalar transport equations that must be solved to min(Mi, M2) where M = K - Nr and M2 = number of feed streams - 1. In many practical applications of turbulent reacting flows, M =E and M2 = 1, and one can assume that the molecular-diffusion coefficients are equal thus, only one conserved scalar transport equation (i.e., the mixture fraction) is required to describe the flow. [Pg.165]

The failure of first-order moment closures for the treatment of mixing-sensitive reactions has led to the exploration of higher-order moment closures (Dutta and Tarbell 1989 Heeb and Brodkey 1990 Shenoy and Toor 1990). The simplest closures in this category attempt to relate the covariances of reactive scalars to the variance of the mixture fraction (I 2). The latter can be found by solving the inert-scalar-variance transport equation ((3.105), p. 85) along with the transport equation for (f). For example, for the one-step reaction in (5.54) the unknown scalar covariance can be approximated by... [Pg.174]

The interest in reformulating the conserved-variable scalars in terms of the mixture-fraction vector lies in the fact that relatively simple forms for the mixture-fraction PDF can be employed to describe the reacting scalars. However, if < /Vmf, then the incentive is greatly diminished since more mixture-fraction-component transport equations (Nmf) would have to be solved than conserved-variable-scalar transport equations (/V, << ). We will thus assume that N m = Nmf and seek to define the mixture-fraction vector only for this case. Nonetheless, in order for the mixture-fraction PDF method to be applicable to the reacting scalars, they must form a linear mixture defined in terms of the components of the mixture-fraction vector. In some cases, the existence of linear mixtures is evident from the initial/inlet conditions however, this need not always be the case. Thus, in this section, a general method for defining the mixture-fraction vector in terms of a linear-mixture basis for arbitrary initial/inlet conditions is developed. [Pg.180]

Having demonstrated the existence of a mixture-fraction vector for certain turbulent reacting flows, we can now turn to the question of how to treat the reacting scalars in the equilibrium-chemistry limit for such flows. Applying the linear transformation given in (5.107), the reaction-progress-vector transport equation becomes... [Pg.196]

Chapter 3 will be employed. Thus, in lieu of (x, t), only the mixture-fraction means ( ) and covariances ( , F) (/, j e 1,..., Nm() will be available. Given this information, we would then like to compute the reacting-scalar means and covariances (require additional information about the mixture-fraction PDF. A similar problem arises when a large-eddy simulation (LES) of the mixture-fraction vector is employed. In this case, the resolved-scale mixture-fraction vector (x, t) is known, but the sub-grid-scale (SGS) fluctuations are not resolved. Instead, a transport equation for the SGS mixture-fraction covariance can be solved, but information about the SGS mixture-fraction PDF is still required to compute the resolved-scale reacting-scalar fields. [Pg.198]

In the equilibrium-chemistry limit, the turbulent-reacting-flow problem thus reduces to solving the Reynolds-averaged transport equations for the mixture-fraction mean and variance. Furthermore, if the mixture-fraction field is found from LES, the same chemical lookup tables can be employed to find the SGS reacting-scalar means and covariances simply by setting x equal to the resolved-scale mixture fraction and x2 equal to the SGS mixture-fraction variance.88... [Pg.199]

Note that the reaction-progress variable is defined such that 0 < Y < 1. However, unlike the mixture fraction, its value will depend on the reaction rate k = /> Bo. The solution to the reacting-flow problem then reduces to solving two transport equations ... [Pg.202]

By conditioning on the mixture fraction (i.e., on the event where f(x, t) = f), the reaction-progress-variable transport equation can be rewritten in terms of 7(f, r) 115... [Pg.223]

Given (5.292) and the mixture-fraction PDF, the chemical source term in the Reynolds-averaged transport equation for (7) is closed ... [Pg.229]

On the other hand, on the bounding hypersurfaces the normal diffusive flux must be null. However, this condition will result naturally from the fact that the conditional joint scalar dissipation rate must be zero-flux in the normal direction on the bounding hypersurfaces in order to satisfy the transport equation for the mixture-fraction PDF.122... [Pg.231]

As shown in Chapter 6, the mixture-fraction PDF in a homogeneous flow (f t) obeys a simple transport equation ... [Pg.231]

The conditional velocity also appears in the inhomogeneous transport equation for x. / ), and is usually closed by a simple gradient-diffusion model. Given the mixture-fraction PDF, (5.316) can be closed in this manner by first decomposing the velocity into its mean and fluctuating components ... [Pg.234]

This assumption leads to relationships for a and b of the form of (5.144) and (5.145), respectively, but with the mixture-fraction mean and variance replaced by the mean and variance of Y. The joint PDF can thus be closed by solving four transport equations for... [Pg.236]

On the other hand, the form of the scalar-variance transport equation will depend on Gs and For example, applying the model to the mixture fraction 6 in the absence of... [Pg.245]

Comparing (5.377) with (3.105) on p. 85 in the high-Reynolds-number limit (and with e = 0), it can be seen that (5.378) is a spurious dissipation term.149 This model artifact results from the presumed form of the joint composition PDF. Indeed, in a transported PDF description of inhomogeneous scalar mixing, the scalar PDF relaxes to a continuous (Gaussian) form. Although this relaxation process cannot be represented exactly by a finite number of delta functions, Gs and M1 1 can be chosen to eliminate the spurious dissipation term in the mixture-fraction-variance transport equation.150... [Pg.246]

The mixture-fraction-variance transport equation can be found starting from (5.383) and (5.384) 151... [Pg.247]

Multi-environment presumed PDF models can also be easily extended to treat cases with more than two feed streams. For example, a four-environment model for a flow with three feed streams is shown in Fig. 5.24. For this flow, the mixture-fraction vector will have two components, 2 and 22- The micromixing functions should thus be selected to agree with the variance transport equations for both components. However, in comparison with multi-variable presumed PDF methods for the mixture-fraction vector (see Section 5.3), the implementation of multi-environment presumed PDF models in CFD calculations of chemical reactors with multiple feed streams is much simpler. [Pg.251]

Because the micromixing terms describe mixing at a fixed value of the mixture fraction, choosing these terms in (5.398) and (5.399) is more problematic than for the unconditional case. For example, since we have assumed that p does not depend on the mixture fraction, the model for yC, must also be independent of mixture fraction. However, the model for yM(n) will, in general, depend on . Likewise, as with the unconditional model, the micromixing rate (y) and spurious dissipation terms must be chosen to ensure that the model yields the correct transport equation for the conditional second-order moments (e.g., (4> a 10)- Thus, depending on the number of environments employed, it may be difficult to arrive at consistent closures. [Pg.254]

As compared with the other closures discussed in this chapter, computation studies based on the presumed conditional PDF are relatively rare in the literature. This is most likely because of the difficulties of deriving and solving conditional moment equations such as (5.399). Nevertheless, for chemical systems that can exhibit multiple reaction branches for the same value of the mixture fraction,162 these methods may offer an attractive alternative to more complex models (such as transported PDF methods). Further research to extend multi-environment conditional PDF models to inhomogeneous flows should thus be pursued. [Pg.255]

The procedure followed above can be used to develop a multi-environment conditional LES model starting from (5.396). In this case, all terms in (5.399) will be conditioned on the filtered velocity and filtered compositions,166 in addition to the residual mixture-fraction vector = - . In the case of a one-component mixture fraction, the latter can be modeled by a presumed beta PDF with mean f and variance (f,2>. LES transport equations must then be added to solve for the mixture-fraction mean and variance. Despite this added complication, all model terms carry over from the original model. The only remaining difficulty is to extend (5.399) to cover inhomogeneous flows.167 As with the conditional-moment closure discussed in Section 5.8 (see (5.316) on p. 215), this extension will be non-trivial, and thus is not attempted here. [Pg.258]

For each test case, a non-reacting scalar (e.g., mixture fraction) should be used to determine the spatial distribution of its mean and variance (i.e., (f) and (f/2 . These results can then be compared with those found by solving the RANS transport equations (i.e., (4.70), p. 120 and (4.90), p. 125) with identical values for (U) and Tt. Fike-wise, the particle-weight distribution should be compared with the theoretical value (i.e., (7.74)). While small fluctuations about the theoretical value are to be expected, a systematic deviation almost always is the result of inconsistencies in the particle-convection algorithm. [Pg.380]


See other pages where Mixture fraction transport equation is mentioned: [Pg.257]    [Pg.243]    [Pg.128]    [Pg.129]    [Pg.160]    [Pg.175]    [Pg.194]    [Pg.195]    [Pg.202]    [Pg.202]    [Pg.212]    [Pg.222]    [Pg.235]    [Pg.237]    [Pg.240]    [Pg.245]    [Pg.246]    [Pg.247]    [Pg.249]    [Pg.257]   
See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Mixture fraction

Transport equation

Transportation fraction

© 2024 chempedia.info