Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixing nucleation

The Avrami equationhas been extended to various crystallization models by computer simulation of the process and using a random probe to estimate the degree of overlap between adjacent crystallites. Essentially, the basic concept used was that of Evans in his use of Poisson s solution of the expansion of raindrops on the surface of a pond. Originally the model was limited to expansion of symmetrical entities, such as spheres in three dimensions, circles in two dimensions, and rods in one, for which n = 2,2, and 1, respectively. This has been verified by computer simulation of these systems. However, the method can be extended to consider other systems, more characteristic of crystallizing systems. The effect of (a) mixed nucleation, ib) volume shrinkage, (c) variable density of crystallinity without a crystallite, and (random nucleation were considered. AH these models approximated to the Avrami equation except for (c), which produced markedly fractional but different n values from 3, 2, or I. The value varied according to the time dependence chosen for the density. It was concluded that this was a powerful technique to assess viability of various models chosen to account for the observed value of the exponent, n. [Pg.229]

The Kleber-Colombes rigid PVC foam (253,254) is produced by compression mol ding vinyl plastisol to react and gel the compound, followed by steam expansion. The process involves mixing, mol ding, and expansion. The formulation consists of PVC, isocyanate, vinyl monomers such as styrene, anhydrides such as maleic anhydride, polymerization initiators, FC-11, and nucleators. The ingredients are mixed in a Wemer-Pfleiderer or a Baker Perkins... [Pg.420]

Sol-Gel Techniques. Sol-gel powders (2,13,15,17) are produced as a suspension or sol of coUoidal particles or polymer molecules mixed with a Hquid that polymerizes to form a gel (see Colloids SoL-GELtechnology). Typically, formation of a sol is foUowed by hydrolysis, polymerization, nucleation, and growth. Drying, low temperature calciaation, and light milling are subsequently required to produce a powder. Sol-gel synthesis yields fine, reactive, pseudo-crystalline powders that can be siatered at temperatures hundreds of degrees below conventionally prepared, crystalline powders. [Pg.305]

Correlations of nucleation rates with crystallizer variables have been developed for a variety of systems. Although the correlations are empirical, a mechanistic hypothesis regarding nucleation can be helpful in selecting operating variables for inclusion in the model. Two examples are (/) the effect of slurry circulation rate on nucleation has been used to develop a correlation for nucleation rate based on the tip speed of the impeller (16) and (2) the scaleup of nucleation kinetics for sodium chloride crystalliza tion provided an analysis of the role of mixing and mixer characteristics in contact nucleation (17). Pubhshed kinetic correlations have been reviewed through about 1979 (18). In a later section on population balances, simple power-law expressions are used to correlate nucleation rate data and describe the effect of nucleation on crystal size distribution. [Pg.343]

Determination of Crystallization Kinetics. Under steady-state conditions, the total number production rate of crystals in a perfectly mixed crystallizer is identical to the nucleation rate, B. Accordingly,... [Pg.349]

Many industrial crystallizers operate in a weU-mixed or nearly weU-mixed manner, and the equations derived above can be used to describe their performance. Furthermore, the simplicity of the equations describing an MSMPR crystallizer make experimental equipment configured to meet the assumptions lea ding to equation 44 useful in determining nucleation and growth kinetics in systems of interest. [Pg.350]

These mechanisms can be observed in many common situations. For example, fog via mixing can be seen in the discharge of breath on a cold day. Fog via adiabatic expansion can be seen in the low-pressure area over the wing of an airplane landing on a humid summer day and fog via condensation can be seen in the exhaust from an automobile air conditioner (if you follow closely enough behind another car to pick up the ions or NO molecules needed for nucleation). All of these occur at a veiy low supersaturation and appear to be keyed to an abundance of foreign nuclei. All of these fogs also quickly dissipate as heat or unsaturated gas is added. [Pg.1414]

When a process is continuous, nucleation frequently occurs in the presence of a seeded solution by the combined effec ts of mechanical stimulus and nucleation caused by supersaturation (heterogeneous nucleation). If such a system is completely and uniformly mixed (i.e., the product stream represents the typical magma circulated within the system) and if the system is operating at steady state, the particle-size distribution has definite hmits which can be predic ted mathematically with a high degree of accuracy, as will be shown later in this section. [Pg.1656]

Equation (18-31) contains no information about the ciystalhzer s influence on the nucleation rate. If the ciystaUizer is of a mixed-suspension, mixed-product-removal (MSMPR) type, satisfying the criteria for Eq. (18-31), and if the model of Clontz and McCabe is vahd, the contribution to the nucleation rate by the circulating pump can be calculated [Bennett, Fiedelman, and Randolph, Chem. E/ig, Prog., 69(7), 86(1973)] ... [Pg.1659]

A continuous lipidic cubic phase is obtained by mixing a long-chain lipid such as monoolein with a small amount of water. The result is a highly viscous state where the lipids are packed in curved continuous bilayers extending in three dimensions and which are interpenetrated by communicating aqueous channels. Crystallization of incorporated proteins starts inside the lipid phase and growth is achieved by lateral diffusion of the protein molecules to the nucleation sites. This system has recently been used to obtain three-dimensional crystals 20 x 20 x 8 pm in size of the membrane protein bacteriorhodopsin, which diffracted to 2 A resolution using a microfocus beam at the European Synchrotron Radiation Facility. [Pg.225]

Surface active agents are important components of foam formulations. They decrease the surface tension of the system and facilitate the dispersion of water in the hydrophobic resin. In addition they can aid nucleation, stabilise the foam and control cell structure. A wide range of such agents, both ionic and non-ionic, has been used at various times but the success of the one-shot process has been due in no small measure to the development of the water-soluble polyether siloxanes. These are either block or graft copolymers of a polydimethylsiloxane with a polyalkylene oxide (the latter usually an ethylene oxide-propylene oxide copolymer). Since these materials are susceptible to hydrolysis they should be used within a few days of mixing with water. [Pg.797]

In the SFM the reactor is divided into three zones two feed zones fj and (2 and the bulk b (Figure 8.1). The feed zones exchange mass with each other and with the bulk as depicted with the flow rates mi 2, i,3 and 2,3 respectively, according to the time constants characteristic for micromixing and mesomix-ing. As imperfect mixing leads to gradients of the concentrations in the reactor, different supersaturation levels in different compartments govern the precipitation rates, especially the rapid nucleation process. [Pg.217]

The failure of conventional criteria may be due to the fact that it is not only one mixing process which can be limiting, rather for example an interplay of micromixing and mesomixing can influence the kinetic rates. Thus, by scaling up with constant micromixing times on different scales, the mesomixing times cannot be kept constant but will differ, and consequently the precipitation rates (e.g. nucleation rates) will tend to deviate with scale-up. [Pg.228]

The model is able to predict the influence of mixing on particle properties and kinetic rates on different scales for a continuously operated reactor and a semibatch reactor with different types of impellers and under a wide range of operational conditions. From laboratory-scale experiments, the precipitation kinetics for nucleation, growth, agglomeration and disruption have to be determined (Zauner and Jones, 2000a). The fluid dynamic parameters, i.e. the local specific energy dissipation around the feed point, can be obtained either from CFD or from FDA measurements. In the compartmental SFM, the population balance is solved and the particle properties of the final product are predicted. As the model contains only physical and no phenomenological parameters, it can be used for scale-up. [Pg.228]

The reactor has been successfully used in the case of forced precipitation of copper and calcium oxalates (Jongen etal., 1996 Vacassy etal., 1998 Donnet etal., 1999), calcium carbonate (Vacassy etal., 1998) and mixed yttrium-barium oxalates (Jongen etal., 1999). This process is also well adapted for studying the effects of the mixing conditions on the chemical selectivity in precipitation (Donnet etal., 2000). When using forced precipitation, the mixing step is of key importance (Schenk etal., 2001), since it affects the initial supersaturation level and hence the nucleation kinetics. A typical micromixer is shown in Figure 8.35. [Pg.258]


See other pages where Mixing nucleation is mentioned: [Pg.248]    [Pg.2368]    [Pg.2374]    [Pg.151]    [Pg.2351]    [Pg.126]    [Pg.137]    [Pg.91]    [Pg.593]    [Pg.137]    [Pg.275]    [Pg.233]    [Pg.29]    [Pg.28]    [Pg.248]    [Pg.2368]    [Pg.2374]    [Pg.151]    [Pg.2351]    [Pg.126]    [Pg.137]    [Pg.91]    [Pg.593]    [Pg.137]    [Pg.275]    [Pg.233]    [Pg.29]    [Pg.28]    [Pg.339]    [Pg.2765]    [Pg.405]    [Pg.24]    [Pg.451]    [Pg.134]    [Pg.148]    [Pg.308]    [Pg.527]    [Pg.344]    [Pg.357]    [Pg.1658]    [Pg.1659]    [Pg.1664]    [Pg.1876]    [Pg.1882]    [Pg.1903]    [Pg.1993]    [Pg.142]    [Pg.77]    [Pg.183]    [Pg.189]   
See also in sourсe #XX -- [ Pg.8 , Pg.119 , Pg.121 , Pg.125 ]




SEARCH



© 2024 chempedia.info