Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixing interfacial area

Static mixing of gas—Hquid systems can provide good interphase contacting for mass transfer and heat transfer. Specific interfacial area for the SMV (Koch/Sulzer) mixer is related to gas velocity and gas holdup ( ) by the following ... [Pg.437]

Because the highest possible interfacial area is desired for the heterogeneous reaction mixture, advances have also been made in the techniques used for mixing the two reaction phases. Several jet impingement reactors have been developed that are especially suited for nitration reactions (14). The process boosts reaction rates and yields. It also reduces the formation of by-products such as mono-, di-, and trinitrophenol by 50%. First Chemical (Pascagoula, Mississippi) uses this process at its plant. Another technique is to atomize the reactant layers by pressure injection through an orifice nozzle into a reaction chamber (15). The technique uses pressures of typically 0.21—0.93 MPa (30—135 psi) and consistendy produces droplets less than 1 p.m in size. The process is economical to build and operate, is safe, and leads to a substantially pure product. [Pg.65]

In developing correlations for the mass-transfer coefficients Icq and /cl, the various authors have assumed different but internally compatible correlations for the effective interfacial area a. It therefore would be inappropriate to mix the correlations of different authors unless it has been demonstrated that there is a valid area of overlap between them. [Pg.624]

Coughlin and von Berg [Chem. Eng. Sci., 21, 3 (1966)]. Continuous heat transfer and extraction of ethylbiityric acid between kerosine and water unbaffled vessel, Pump-Mix design (Fig. 15-28). Interfacial area measured. [Pg.1468]

This figure shows an optimum power input below this value efficiency drops off due to reduced interfacial area above this value efficiency decreases due to increased axial mixing of the continuous and dispersed phases. [Pg.1484]

An impeller with a high fluid head is one with high peripheral velocity and discharge velocity. Such impellers are useful for (I) rapid reduction of concentration differences in the impeller discharge stream (rapid mixing), (2) production of large interfacial area and small droplets in gas-hquid and immiscible-liquid systems, (3) sohds deagglomeration, and (4) promotion of mass transfer between phases. [Pg.1629]

Equipment suitable for reactions between hquids is represented in Fig. 23-37. Almost invariably, one of the phases is aqueous with reactants distributed between phases for instance, NaOH in water at the start and an ester in the organic phase. Such reac tions can be carried out in any kind of equipment that is suitable for physical extraction, including mixer-settlers and towers of various kinds-, empty or packed, still or agitated, either phase dispersed, provided that adequate heat transfer can be incorporated. Mechanically agitated tanks are favored because the interfacial area can be made large, as much as 100 times that of spray towers, for instance. Power requirements for L/L mixing are normally about 5 hp/1,000 gal and tip speeds of turbine-type impellers are 4.6 to 6.1 i7i/s (15 to 20 ft/s). [Pg.2116]

To apply the mass transfer equation for design, the interfacial area, a, and mass transfer coefficient kL must be calculated. The interfacial area is dependent upon the bubble size and gas hold-up in the mixing vessel as given by ... [Pg.473]

The performance equation of a mixer relates mixer size or mixing time to the input and output of the mixing device. The rate of transfer, r, incorporates the mass transfer coefficient, kL, and interfacial area, a, as calculated above. This rate can be used in conjunction with a material balance to relate concentrations of interest to time or size variables. [Pg.474]

A quite different approach was introduced in the early 1980s [44-46], in which a dense solid electrode is fabricated which has a composite microstructure in which particles of the reactant phase are finely dispersed within a solid, electronically conducting matrix in which the electroactive species is also mobile. There is thus a large internal reactant/mixed-conductor matrix interfacial area. The electroactive species is transported through the solid matrix to this interfacial region, where it undergoes the chemical part of the electrode reaction. Since the matrix material is also an electronic conductor, it can also act as the electrode s current collector. The electrochemical part of the reaction takes place on the outer surface of the composite electrode. [Pg.375]

Agitation of fermentation broth creates a uniform distribution of ah in the media. Once you mix a solution, you exert an energy into the system. Increasing power input reduces the bubble size and this in turn increases the interfacial area. Therefore the mass transfer coefficient would be a function of power input per unit volume of fermentation broth, which is also affected by the gas superficial velocity.2,3 The general correlation is expected to be as follows ... [Pg.26]

P 28/The Hquid feed was introduced by a pump and the gas feed using a mass-flow controller [10], The reaction was carried out using liquid flows of 20.7-51.8 ml h and gas flows of 1.7-173 mlrnin . The gas and liquid velocities amounted to 0.02-1.2 and 0.03-3.0 m s , respectively. The reaction was performed in mixed flow regimes, including bubbly, slug and annular patterns. The specific interfacial areas amoimted to about 5000-15 000 m m . The reaction was conducted at room temperature. [Pg.646]

Stopped flow mixing of organic and aqueous phases is an excellent way to produce dispersion within a few milliseconds. The specific interfacial area of the dispersion can become as high as 700 cm and the interfacial reaction in the dispersed system can be measured by a photodiode array spectrophotometer. A drawback of this method is the limitation of a measurable time, although it depends on the viscosity. After 200 ms, the dispersion system starts to separate, even in a rather viscous solvent like a dodecane. Therefore, rather fast interfacial reactions such as diffusion-rate-limiting reactions are preferable systems to be measured. [Pg.362]

A two phase process, in which the feedstock (e.g., petroleum) was mixed with water and an organic solvent to improve denitrogenation of aromatic nitrogen compounds [102], led to an improvement of the process. Additionally, a surfactant was used to increase the interfacial area. Carbazole and quinoline and their alkyl derivatives were used as primary compounds for demonstration. The biocatalyst is used in resting stage and is continuously fed to the system to keep the reaction rate at an acceptable level. It was observed that quinoline was hardly removed under the conditions at which carbazole was decomposed and assimilated. [Pg.340]


See other pages where Mixing interfacial area is mentioned: [Pg.213]    [Pg.2126]    [Pg.213]    [Pg.2126]    [Pg.429]    [Pg.64]    [Pg.501]    [Pg.512]    [Pg.507]    [Pg.515]    [Pg.1292]    [Pg.1637]    [Pg.2115]    [Pg.119]    [Pg.127]    [Pg.473]    [Pg.270]    [Pg.667]    [Pg.721]    [Pg.28]    [Pg.354]    [Pg.364]    [Pg.56]    [Pg.275]    [Pg.382]    [Pg.299]    [Pg.204]    [Pg.206]    [Pg.211]    [Pg.292]    [Pg.354]    [Pg.387]    [Pg.569]    [Pg.50]    [Pg.204]    [Pg.359]    [Pg.645]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Interfacial area

Interfacial mixing

© 2024 chempedia.info