Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparation mixed metals

Manganaies IV), manganites. Mixed-metal oxides containing Mn(IV). Prepared by solid state reactions. [Pg.249]

Today the most efficient catalysts are complex mixed metal oxides that consist of Bi, Mo, Fe, Ni, and/or Co, K, and either P, B, W, or Sb. Many additional combinations of metals have been patented, along with specific catalyst preparation methods. Most catalysts used commercially today are extmded neat metal oxides as opposed to supported impregnated metal oxides. Propylene conversions are generally better than 93%. Acrolein selectivities of 80 to 90% are typical. [Pg.123]

MAA and MMA may also be prepared via the ammoxidation of isobutylene to give meth acrylonitrile as the key intermediate. A mixture of isobutjiene, ammonia, and air are passed over a complex mixed metal oxide catalyst at elevated temperatures to give a 70—80% yield of methacrylonitrile. Suitable catalysts often include mixtures of molybdenum, bismuth, iron, and antimony, in addition to a noble metal (131—133). The meth acrylonitrile formed may then be hydrolyzed to methacrjiamide by treatment with one equivalent of sulfuric acid. The methacrjiamide can be esterified to MMA or hydrolyzed to MAA under conditions similar to those employed in the ACH process. The relatively modest yields obtainable in the ammoxidation reaction and the generation of a considerable acid waste stream combine to make this process economically less desirable than the ACH or C-4 oxidation to methacrolein processes. [Pg.253]

The red tetrathiomolybdate ion appears to be a principal participant in the biological Cu—Mo antagonism and is reactive toward other transition-metal ions to produce a wide variety of heteronuclear transition-metal sulfide complexes and clusters (13,14). For example, tetrathiomolybdate serves as a bidentate ligand for Co, forming Co(MoSTetrathiomolybdates and their mixed metal complexes are of interest as catalyst precursors for the hydrotreating of petroleum (qv) (15) and the hydroHquefaction of coal (see Coal conversion processes) (16). The intermediate forms MoOS Mo02S 2> MoO S have also been prepared (17). [Pg.470]

Orthophosphate salts are generally prepared by the partial or total neutralization of orthophosphoric acid. Phase equiUbrium diagrams are particularly usehil in identifying conditions for the preparation of particular phosphate salts. The solution properties of orthophosphate salts of monovalent cations are distincdy different from those of the polyvalent cations, the latter exhibiting incongment solubiUty in most cases. The commercial phosphates include alkah metal, alkaline-earth, heavy metal, mixed metal, and ammonium salts of phosphoric acid. Sodium phosphates are the most important, followed by calcium, ammonium, and potassium salts. [Pg.331]

A large number of pyrophosphate salts have been prepared (Table 10). In addition to individual metal salts, ammonium pyrophosphates and many mixed-metal pyrophosphates are known. Pyrophosphates of notable commercial importance include sodium, potassium, and calcium salts. [Pg.336]

The reaction is driven to completion by distilling the lower boiling alcohol. Metal methoxides are frequentiy insoluble and caimot be employed as starting materials in this reaction by the same token, they can be convenientiy prepared from solutions of higher alkoxides by precipitation with methanol. Alcoholysis also gives mixed metal alkoxides ... [Pg.25]

Titanium—Vanadium Mixed Metal Alkoxides. Titanium—vanadium mixed metal alkoxides, VO(OTi(OR)2)2, are prepared by reaction of titanates, eg, TYZOR TBT, with vanadium acetate ia a high boiling hydrocarbon solvent. The by-product butyl acetate is distilled off to yield a product useful as a catalyst for polymeri2iag olefins, dienes, styrenics, vinyl chloride, acrylate esters, and epoxides (159,160). [Pg.151]

Two double salts of potassium dichloroisocyanurate [PDCC, KCl2(NCO)3] and TCCA are known, ie, Cl3(NCO)3 KCl2(NCO)3 [30622-37-8] and Cl2(NCO)2 4KCl2(NCO)2 [30622-37-8]. The latter is produced commercially. It can be prepared by reaction of TCCA dissolved iu acetone with aqueous PDCC (39), reaction of TCCA with saturated KCl or potassium salts of organic acids (34), or by reaction of CA with KOCl (40). A number of mixed metal... [Pg.418]

The method is clearly of potential use in preparing mixed metal clusters, e.g. (Co -t- Ni) or (Co -t-Fe), and can be extended to prepare more complicated cluster arrays as depicted below, the subrogated B atom being indicated as a shaded circle in (92). [Pg.191]

Many novel cluster compounds have now been prepared in this way, including mixed metal clusters. Further routes involve the oxidative fusion of dicarbon metallacarborane anions to give dimetal tetracarbon clusters such as (103) and (104) O (jjg insertion of isonitriles into inetallaborane clusters to give monocarbon meiallacarboranes such as (105) and the reaction of small ii/t/o-carboranes with alane adducts such as Et3NAlH3 to give the commo species (106) ... [Pg.192]

Cobalt provides only a few examples of this oxidation state, namely some fluoro compounds and mixed metal oxides, whose purity is questionable and, most notably, the thermally stable, brown, tetraalkyl, [Co(l-norbomyl)4]. Prepared by the reaction of C0CI2 and Li(l-norbomyl), it is the only one of a series of such compounds obtained for the first row transition... [Pg.1121]

Nonstoichiometry is relatively common among mixed metal oxides, in which more than one metal is present. In 1986 it was discovered that certain compounds of this type showed the phenomenon of superconductivity on cooling to about 100 K, their electrical resistance drops to zero (Figure 20.9). A typical formula here is YBa2Cu30 where x varies from 6.5 to 7.2, depending on the method of preparation of the solid. [Pg.545]

These methods may be used to prepare mixed metal clusters. Simultaneous codeposition of Ag and Cu vapors in Ar at 10-12 K yields a mixture including atomic Ag and Cu, dimers Ag, and Cu, together with AgCu. At 77 K, CuAg4 and Cu,Ag3 clusters occur . The amount of AgCu can be increased by photoexcitation with 305 nm Ag or Cu atomic radiation. The trimer AuAgCu is produced when a mixture of Au, Ag and Cu vapors is condensed at 77 K. [Pg.494]

The electronic, optical, and magnetic properties of metal clusters are of great current interest, but these properties have been little studied with very mixed -metal clusters. This is to some extent a reflection of the difficulty of preparing high-nuclearity examples many of these interesting properties become important upon increasing cluster size. The limited magnetic studies to date are... [Pg.130]

Table 5 shows HDS product distributions over several catalysts prepared by using the molybdenum-nickel cluster 2. Sulfur content in decane was adjusted to 5.0 wt% in these experiments. MoNi/NaY was found to be more active than MoNi/Al203. It is to be noted that during the high temperature pretreatment the original cluster structure would have been changed. However, the high activity of the MoNi/NaY catalyst for benzothiophene HDS is probably due to the formation of active sites derived from this particular mixed metal cluster. [Pg.113]

Mixed metal hydroxides can be prepared from the corresponding chlorides treated with ammonium [276]. Experiments done with various drilling fluids showed that the mixed metal hydroxides system, coupled with propylene glycol [469], caused the least skin damage of the drilling fluids tested. [Pg.13]

Preparation of mixed metal oxides - The sulfated metal oxides (zircoiua, titaiua and tin oxide) were synthesized using a two-step method. The first step is the hydroxylation of metal complexes. The second step is the sulfonation with H2SO4 followed by calcination in air at various temperatures, for 4 h, in a West 2050 oven, at the temperature rate of 240°C hSulfated zirconia Zr0Cl2.8H20 (50 g) was... [Pg.298]

Sadakane, M., Asanuma, T., Kubo, J. et al. (2005) Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method, Chem. Mater. 17, 3546. [Pg.323]

By judicious choice of reaction conditions an acyclic Ni11 complex (784) could be isolated, which serves as a valuable starting material for the preparation of unsymmetrical and mixed metal complexes by subsequent reaction with various amines. Also, a symmetrical Schiff base macrocycle of larger size has been obtained as a minor byproduct upon condensation of (784) with 1,3-diaminopropane. The resulting Ni11 complex (785) is again bimetallic, although room to bind four metal ions is in principle available.1367... [Pg.440]


See other pages where Preparation mixed metals is mentioned: [Pg.24]    [Pg.179]    [Pg.275]    [Pg.385]    [Pg.550]    [Pg.437]    [Pg.477]    [Pg.136]    [Pg.43]    [Pg.317]    [Pg.300]    [Pg.51]    [Pg.108]    [Pg.102]    [Pg.76]    [Pg.293]    [Pg.5]    [Pg.360]    [Pg.168]    [Pg.19]    [Pg.121]    [Pg.208]    [Pg.219]    [Pg.221]    [Pg.653]    [Pg.683]    [Pg.734]    [Pg.975]   
See also in sourсe #XX -- [ Pg.256 , Pg.302 ]




SEARCH



Metal preparation

Mixed metal

Mixes preparation

© 2024 chempedia.info