Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mitochondria energy metabolism

As the power house of the cell, the mitochondrion is essential for energy metabolism. As the motor of cell death (1), this organelle is central to the initiation and regulation of apoptosis. In addition, mitochondria are critically involved in the modulation of intracellular calcium concentration and the mitochondrial respiratory chain is the major source of damaging reactive oxygen species. Mitochondria also play a crucial role in numerous catabolic and anabolic cellular pathways. [Pg.318]

In eukaryotes, most of the reactions of aerobic energy metabolism occur in mitochondria. An inner membrane separates the mitochondrion into two spaces the internal matrix space and the intermembrane space. An electron-transport system in the inner membrane oxidizes NADH and succinate at the expense of 02, generating ATP in the process. The operation of the respiratory chain and its coupling to ATP synthesis can be summarized as follows ... [Pg.327]

Fig. 5.4. Two types of energy metabolism in cestodes. (a) Type 1 homolactate fermentation, (b) Type 2 Malate dismutation. Reaction 3 involves a carboxylation step decarboxylation occurs at 6, 7 and 10. Reducing equivalents are generated at reactions 6 and 7 one reducing equivalent is used at reaction 9. Thus, when the mitochondrial compartment is in redox balance and malate is the sole substrate, twice as much propionate as acetate is produced. Key 1, pyruvate kinase 2, lactate dehydrogenase 3, phosphoenolpyruvate carboxykinase 4, malate dehydrogenase 5, mitochondrial membrane 6 malic enzyme 7, pyruvate dehydrogenase complex 8, fumarase 9, fumarate reductase 10, succinate decarboxylase complex. indicates reactions at which ATP is synthesised from ADP cyt, cytosol mit, mitochondrion. (After Bryant Flockhart, 1986.)... Fig. 5.4. Two types of energy metabolism in cestodes. (a) Type 1 homolactate fermentation, (b) Type 2 Malate dismutation. Reaction 3 involves a carboxylation step decarboxylation occurs at 6, 7 and 10. Reducing equivalents are generated at reactions 6 and 7 one reducing equivalent is used at reaction 9. Thus, when the mitochondrial compartment is in redox balance and malate is the sole substrate, twice as much propionate as acetate is produced. Key 1, pyruvate kinase 2, lactate dehydrogenase 3, phosphoenolpyruvate carboxykinase 4, malate dehydrogenase 5, mitochondrial membrane 6 malic enzyme 7, pyruvate dehydrogenase complex 8, fumarase 9, fumarate reductase 10, succinate decarboxylase complex. indicates reactions at which ATP is synthesised from ADP cyt, cytosol mit, mitochondrion. (After Bryant Flockhart, 1986.)...
First, it is possible that enzymes of aerobic and anaerobic energy metabolism found in mitochondrion-related organelles of present-day eukaryotes originated with the a-proteobacterial symbiont that gave rise to mitochondria (Fig. 10.5, top), which could have been a facultative aerobe (e.g. Martin and Muller 1998 and Rotte et al. 2000 provide a biochemical rationale for this view). After the initial symbiotic integration of the mitochondrial ancestor, many endosymbiont genes were transferred to the nucleus, some of which were... [Pg.265]

Haridas, V, Li, X., Mizumachi, T., Higuchi, M., Lemeshko, V. V., Colombini, M., and Gutterman, J.U. (2007) Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion 7 234-240. [Pg.297]

The processes of electron transport and oxidative phosphorylation are membrane-associated. Bacteria are the simplest life form, and bacterial cells typically consist of a single cellular compartment surrounded by a plasma membrane and a more rigid cell wall. In such a system, the conversion of energy from NADH and [FADHg] to the energy of ATP via electron transport and oxidative phosphorylation is carried out at (and across) the plasma membrane. In eukaryotic cells, electron transport and oxidative phosphorylation are localized in mitochondria, which are also the sites of TCA cycle activity and (as we shall see in Chapter 24) fatty acid oxidation. Mammalian cells contain from 800 to 2500 mitochondria other types of cells may have as few as one or two or as many as half a million mitochondria. Human erythrocytes, whose purpose is simply to transport oxygen to tissues, contain no mitochondria at all. The typical mitochondrion is about 0.5 0.3 microns in diameter and from 0.5 micron to several microns long its overall shape is sensitive to metabolic conditions in the cell. [Pg.674]

The title of this book means that our inquiry about metabolism must be limited to the actual energy conversion process itself, and it has been widely agreed that this occurs at the mitochondrion in each of the cells of the organism. It is also agreed that the distribution of energy (the currency in respect to wealth) is done by ATP, which yields energy locally when needed. [Pg.452]

These organelles are the sites of energy production of aerobic cells and contain the enzymes of the tricarboxylic acid cycle, the respiratory chain, and the fatty acid oxidation system. The mitochondrion is bounded by a pair of specialized membranes that define the separate mitochondrial compartments, the internal matrix space and an intermembrane space. Molecules of 10,000 daltons or less can penetrate the outer membrane, but most of these molecules cannot pass the selectively permeable inner membrane. By a series of infoldings, the internal membrane forms cristae in the matrix space. The components of the respiratory chain and the enzyme complex that makes ATP are embedded in the inner membrane as well as a number of transport proteins that make it selectively permeable to small molecules that are metabolized by the enzymes in the matrix space. Matrix enzymes include those of the tricarboxylic acid cycle, the fatty acid oxidation system, and others. [Pg.9]


See other pages where Mitochondria energy metabolism is mentioned: [Pg.2287]    [Pg.278]    [Pg.209]    [Pg.232]    [Pg.246]    [Pg.87]    [Pg.102]    [Pg.157]    [Pg.206]    [Pg.214]    [Pg.230]    [Pg.239]    [Pg.247]    [Pg.278]    [Pg.235]    [Pg.257]    [Pg.189]    [Pg.198]    [Pg.235]    [Pg.257]    [Pg.45]    [Pg.99]    [Pg.183]    [Pg.19]    [Pg.33]    [Pg.665]    [Pg.28]    [Pg.827]    [Pg.706]    [Pg.97]    [Pg.194]    [Pg.68]    [Pg.523]    [Pg.1283]    [Pg.283]    [Pg.418]    [Pg.41]    [Pg.121]    [Pg.127]    [Pg.277]    [Pg.77]    [Pg.220]    [Pg.23]    [Pg.159]   
See also in sourсe #XX -- [ Pg.115 , Pg.555 , Pg.566 ]




SEARCH



Energy Metabolism in Anaerobically Functioning Mitochondria

Energy metabolic

Energy metabolism

© 2024 chempedia.info