Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Minor attachments

Minor Attachments Minor attachments are small parts attached to the pressure boundary fliat carry no load or insignificant load. They are less flian 3/8 in (10 mm) in thickness or less than 5 in (82 cm ) in size. Some examples are nameplates, insulation supports and locating lugs. [Pg.762]

Major Attachments Any part that is not a minor attachment or lightly loaded by definition. [Pg.762]

If the vessel does not contain internal attachments, such as trays which support liquid, but consists only of the shell insulation, the heads, and minor attachments such as manholes, nozzles, and sts on, the additional load may be estimated as approximaici) cqua to 18% of the weight of a. steel sliHI. or as shmvn i>y Ncliion (139),... [Pg.157]

Active methylene or methine compounds, to which two EWGs such as carbonyl, alko.xycarbonyl, formyl, cyano, nitro, and sulfonyl groups are attached, react with butadiene smoothly and their acidic hydrogens are displaced with the 2,7-octadienyl group to give mono- and disubstituted compounds[59]. 3-Substituted 1,7-octadienes are obtained as minor products. The reaction is earned out with a /3-keto ester, /9-diketone, malonate, Q-formyl ketones, a-cyano and Q-nitro esters, cya noacetamide, and phenylsulfonylacetate. Di(octadienyl)malonate (61) obtained by this reaction is converted into an... [Pg.432]

Bde salts, cholesterol, phosphoHpids, and other minor components are secreted by the Hver. Bile salts serve three significant physiological functions. The hydrophilic carboxylate group, which is attached via an alkyl chain to the hydrophobic steroid skeleton, allows the bile salts to form water-soluble micelles with cholesterol and phosphoHpids in the bile. These micelles assist in the solvation of cholesterol. By solvating cholesterol, bile salts contribute to the homeostatic regulation of the amount of cholesterol in the whole body. Bile salts are also necessary for the intestinal absorption of dietary fats and fat-soluble vitamins (24—26). [Pg.415]

Figure 7.4 The edges of the base pairs in DNA that ate in the major groove are wider than those in the minor groove, due to the asymmetric-attachment of the base pairs to the sugar-phosphate backbone (a). These edges contain different hydrogen bond donors and acceptors for potentially specific interactions with proteins (b). Figure 7.4 The edges of the base pairs in DNA that ate in the major groove are wider than those in the minor groove, due to the asymmetric-attachment of the base pairs to the sugar-phosphate backbone (a). These edges contain different hydrogen bond donors and acceptors for potentially specific interactions with proteins (b).
The tightly bound chromophore could be extracted from the protein with methanol [186], and the major component of the extract was determined to have the enediyne structure 116 (Figure 11.21), related to chromophores of other chromoprotein antitumor agents such as neocarzinostatin. Additional minor components were extracted, variously containing an OH group instead of OMe attached to the enediyne core, with Cl instead of OMe when chloride was present in the buffer salt, or with OEt instead of OMe when ethanol was used for the extraction. Another byproduct was isolated in the form of structure 117, consistent with a facile cy-doaromatization reaction as observed for all other enediyne antibiotics. Surprisingly, 117 also displayed antibiotic and antitumor activity, perhaps due to alkylation of DNA or protein by the aziridine. The interpretation of these results was that 116 and the other enediyne byproducts were merely artifacts of the extraction procedure and that the true structure of the maduropeptin chromophore is the aziridine 118. [Pg.431]

In addition to having the required spedfidty, lipases employed as catalysts for modification of triglycerides must be stable and active under the reaction conditions used. Lipases are usually attached to supports (ie they are immobilised). Catalyst activity and stability depend, therefore, not only on the lipase, but also the support used for its immobilisation. Interesterification reactions are generally run at temperatures up to 70°C with low water availability. Fortunately many immobilised lipases are active and resistant to heat inactivation under conditions of low water availability, but they can be susceptible to inactivation by minor components in oils and fats. If possible, lipases resistant to this type of poisoning should be selected for commercial operations. [Pg.331]

For the determination of the enantiomeric excess. 23 mg of the mi-hydroxy ester (containing 2 5% //-product) and 9 mg of tris[3-(heptafluoropropylhydroxymethylene)-a-camphorato]europium are dissolved in 0.5 mL of CDC13. The ec is calculated from the peak heights and areas of the resolved doublets, due to the methyl groups attached to C-2. of the minor (f) 1.74) and major (<5 1.98) enantiomers. [Pg.611]

In discussing the elFect of structure on the stabilization of alkyl cations on the basis of the carbonylation-decarbonylation equilibrium constants, it is assumed that—to a first approximation—the stabilization of the alkyloxocarbonium ions does not depend on the structure of the alkyl group. The stabilization of the positive charge in the alkyloxocarbonium ion is mainly due to the resonance RC = 0 <-> RC = 0+, and the elFect of R on this stabilization is only of minor importance. It has been shown by Brouwer (1968a) that even in the case of (tertiary) alkylcarbonium ions, which would be much more sensitive to variation of R attached to the electron-deficient centre, the stabilization is practically independent of the structure of the alkyl groups. Another argument is found in the fact that the equilibrium concentrations of isomeric alkyloxocarbonium ions differ by at most a factor of 2-3 from each other (Section III). Therefore, the value of K provides a quantitative measure of the stabilization of an alkyl cation. In the case of R = t-adamantyl this equilibrium constant is 30 times larger than when R = t-butyl or t-pentyl, which means that the non-planar t-adamantyl ion is RT In 30= 2-1 kcal... [Pg.33]

In striated muscle, there are two other proteins that are minor in terms of their mass but important in terms of their function. Tropomyosin is a fibrous molecule that consists of two chains, alpha and beta, that attach to F-actin in the groove between its filaments (Figure 49-3). Tropomyosin is present in all muscular and muscle-fike structures. The troponin complex is unique to striated muscle and consists of three polypeptides. Troponin T (TpT) binds to tropomyosin as well as to the other two troponin components. Troponin I (Tpl) inhibits the F-actin-myosin interaction and also binds to the other components of troponin. Troponin C (TpC) is a calcium-binding polypeptide that is structurally and functionally analogous to calmodulin, an important calcium-binding protein widely distributed in nature. Four molecules of calcium ion are bound per molecule of troponin C or calmodulin, and both molecules have a molecular mass of 17 kDa. [Pg.562]

Bubbles with some of them attached with hydrophobic mineral particles shown in the rising mode. Hydrophilic mineral particles with minority presence of hydrophobic mineral particles (those lost chance for contact with bubbles) and bubbles attached with hydrophobic mineral particles (those got mechanically driven along with hydrophilic particles) shown in the descending mode. (B) Froth flotation air bubbles carry nonwetted particles upwards, while wetted mineral particles drown. [Pg.187]

The rhodamine B-bound complex of Ir1 (387) shows only minor alterations in the absorption spectrum of bound rhodamine B as opposed to free dye however, its fluorescence is strongly quenched.626 Fluorescence is intense when the rhodamine dye is attached to an Ir111 center. The authors conclude that the excited-state quenching mechanism is via electron transfer. [Pg.219]

Triblock copolymers, as shown in Fig. 5.8 d), comprise a central homopolymer block of one type, the ends of which are attached to homopolymer chains of another type. As with other block copolymers, the components of triblocks may be compatible or incompatible, which will strongly influence their properties. Of particular interest are triblocks with incompatible sequences, the middle block of which is rubbery, and the end blocks of which are glassy and form the minor phase. When such polymers phase-segregate, it is possible for the end blocks of a single molecule to be incorporated into separate domains. Thus, a number of rubbery mid-block chains connect the glassy phases to one another. These materials display rubber-like properties, with the glassy domains acting as physical crosslinks. Examples of such materials are polystyrene/isoprene/polystyrene and polystyrene/polybutadiene/polystyrene triblock copolymers. [Pg.109]


See other pages where Minor attachments is mentioned: [Pg.352]    [Pg.343]    [Pg.183]    [Pg.358]    [Pg.102]    [Pg.22]    [Pg.21]    [Pg.122]    [Pg.123]    [Pg.123]    [Pg.9]    [Pg.3]    [Pg.282]    [Pg.98]    [Pg.403]    [Pg.27]    [Pg.293]    [Pg.230]    [Pg.75]    [Pg.81]    [Pg.7]    [Pg.538]    [Pg.284]    [Pg.183]    [Pg.103]    [Pg.69]    [Pg.445]    [Pg.337]    [Pg.348]    [Pg.320]    [Pg.51]    [Pg.345]    [Pg.283]    [Pg.412]    [Pg.512]    [Pg.143]   
See also in sourсe #XX -- [ Pg.762 ]




SEARCH



© 2024 chempedia.info