Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microwave irradiation temperature

Bandyopadhyay and Banik reported the synthesis of 3-substituted 4-phenyl-l-(9,10-dihydrophenanthren-3-yl) azetidin-2-ones following Staudinger cycloaddition under microwave-induced conditions [31]. Tlie diastereoselec-tivity of p-lactam formation depends on the power level of the microwave irradiation, temperature, the nature of substituent on lactam nitrogen, and the polarity of the solvent. The preliminary (in vitro) evaluation of these p-lactams against a series of cancer cell lines is encouraging. [Pg.527]

Hydration and Dehydration. Succinic anhydride reacts slowly with cold water and rapidly with hot water to give the acid. For this reason it must be carefully stored in anhydrous conditions. Succinic acid can be dehydrated to the anhydride by heating at 200°C, optionally in the presence of a solvent (31). Dehydration can also be performed with clay catalysis in the presence of isopropenyl acetate under microwave irradiation (32) or with his (trichi oromethyl) carbonate at room temperature (33). [Pg.535]

The use of microwave irradiation for this reaction, compared to conventional thermal heating, was investigated. Chloroform used as solvent under the conventional heating did only allow a temperature of 60 °C and a direct comparison between the two methods is therefore somewhat unfair imder these circumstances. Nevertheless, the microwave-assisted method is attractive and proved useful for both primary and secondary amines resulting in highly substituted pyrazolo ring-fused pyridones 40 in 68-86% yields within only 10 min. [Pg.18]

The Suzuki reaction has been successfully used to introduce new C - C bonds into 2-pyridones [75,83,84]. The use of microwave irradiation in transition-metal-catalyzed transformations is reported to decrease reaction times [52]. Still, there is, to our knowledge, only one example where a microwave-assisted Suzuki reaction has been performed on a quinolin-2(lH)-one or any other 2-pyridone containing heterocycle. Glasnov et al. described a Suzuki reaction of 4-chloro-quinolin-2(lff)-one with phenylboronic acid in presence of a palladium-catalyst under microwave irradiation (Scheme 13) [53]. After screening different conditions to improve the conversion and isolated yield of the desired aryl substituted quinolin-2( lff)-one 47, they found that a combination of palladium acetate and triphenylphosphine as catalyst (0.5 mol %), a 3 1 mixture of 1,2-dimethoxyethane (DME) and water as solvent, triethyl-amine as base, and irradiation for 30 min at 150 °C gave the best result. Crucial for the reaction was the temperature and the amount of water in the... [Pg.21]

Linking the ketone and carboxylic acid components together in an Ugi reaction facilitates the synthesis of pyrrolidinones amenable to library design. The three-component condensation of levulinic acid 30, an amine and isocyanide proceeds under microwave irradiation to give lactams 31 [65]. The optimum conditions were established by a design of experiments approach, varying the equivalents of amine, concentration, imine pre-formation time, microwave reaction time and reaction temperature, yielding lactams 31 at 100 °C in poor to excellent yield, after only 30 min compared to 48 h under ambient conditions (Scheme 11). [Pg.41]

Microwave irradiation has been used to accelerate the Gewald reaction for the one-pot synthesis of N-acyl aminothiophenes on solid support [67]. A suspension of cyanoacetic acid Wang resin 35, elemental sulfur, DBU and an aldehyde or ketone 36 in toluene was irradiated for 20 min at 120 °C in a single-mode microwave synthesizer (Scheme 13). Acyl chloride 37 was added, followed by DIPEA, and the mixture was irradiated for 10 min at 100 °C. After cooling to room temperature, the washed resin was treated with a TEA solution to give M-acylated thiophenes 38 in 81-99% yield and purities ranging from 46-99%. [Pg.42]

Fewer procedures have been explored recently for the synthesis of simple six-membered heterocycles by microwave-assisted MCRs. Libraries of 3,5,6-trisubstituted 2-pyridones have been prepared by the rapid solution phase three-component condensation of CH-acidic carbonyl compounds 44, NJ -dimethylformamide dimethyl acetal 45 and methylene active nitriles 47 imder microwave irradiation [77]. In this one-pot, two-step process for the synthesis of simple pyridones, initial condensation between 44 and 45 under solvent-free conditions was facilitated in 5 -10 min at either ambient temperature or 100 ° C by microwave irradiation, depending upon the CH-acidic carbonyl compound 44 used, to give enamine intermediate 46 (Scheme 19). Addition of the nitrile 47 and catalytic piperidine, and irradiation at 100 °C for 5 min, gave a library of 2-pyridones 48 in reasonable overall yield and high individual purities. [Pg.46]

Manganese(III)-promoted radical cyclization of arylthioformanilides and a-benzoylthio-formanilides is a recently described microwave-assisted example for the synthesis of 2-arylbenzothiazoles and 2-benzoylbenzothiazoles. In this study, manganese triacetate is introduced as a new reagent to replace potassium ferricyanide or bromide. The 2-substituted benzothiazoles are generated in 6 min at 110°C imder microwave irradiation (300 W) in a domestic oven with no real control of the temperature (reflux of acetic acid) (Scheme 15). Conventional heating (oil bath) of the reaction at 110 °C for 6 h gave similar yields [16]. [Pg.69]

Since 1986, when the very first reports on the use of microwave heating to chemical transformations appeared [147,148], microwave-assisted synthesis has been shown to accelerate most solution-phase chemical reactions [24-27,32,35]. The first application of microwave irradiation for the acceleration of reaction rate of a substrate attached to a solid support (SPPS) was performed in 1992 [36]. Despite the promising results, microwave-assisted soHd-phase synthesis was not pursued following its initial appearance, most probably as a result of the lack of suitable instriunentation. Reproducing reaction conditions was nearly impossible because of the differences between domestic microwave ovens and the difficulties associated with temperature measurement. The technique became a Sleeping Beauty interest awoke almost a decade later with the publication of several microwave-assisted SPOS protocols [37,38,73,139,144]. There has been an extensive... [Pg.89]

Diheteroaryl-l,l -binaphthyls were prepared from 2,2 -diiodo-l,T-binaphthyl via microwave assisted cross-coupling by Putala and Kappe using several heteroarylzinc chlorides (2-thienyl)zinc chloride, (2-furyl)zinc chloride, and (3-pyridinyl)zinc chloride (Scheme 3) [22]. Importantly, no racem-ization occurred at the reaction temperature used, giving access to (R)-2,2 -diheter0aryl-1,T-binaphthyls starting from (i )-2,2 -diiodo-l,l -binaphthyl in excellent yields in 1 to 5 min of microwave irradiation. [Pg.158]

The first microwave-assisted Suzuki reactions involving heteroaromatic skeletons were reported in 1996 [35]. Hallberg et al. Hnked the substrates 4-iodo and 4-bromobenzoic acid to a TentaGel-Rink resin (Scheme 16). Suzuki reactions on these soUd-phase-Unked substrates were easily performed in less than 4 min using a constant microwave irradiation power (45 W) (no temperature control Standard acidic cleavage with TEA yielded the corresponding biaryls with an excellent yield. [Pg.164]

Larhed et al. investigated enantioselective Heck reactions with 2,3-dihydrofuran as alkene [86]. In the coupling with phenyl triflate, conditions previously reported by Pfaltz [87] were attempted under microwave irradiation. Interestingly, the catalytic system Pd2(dba)3/(4S)-4-t-butyl-2-[2-(diphenylphosphanyl)phenyl]-4,5-dihydro-l,3-oxazole, identified by the Swiss team, was found suitable for high-temperature microwave-assisted enantioselective Heck reactions (Scheme 76). Using a proton sponge as a base and benzene as a solvent gave the best conversions (Scheme 76). At tempera-... [Pg.194]

Rapid aminations of 1-bromonaphthalenes with piperidine under microwave irradiation were reported by Hamann using Pd2(dba)3/rac. PPFA (N,N-dimethyl-1-[2-(diphenylphosphanyl)ferrocenyl]ethylamine) precatalyst in combination with NaO-t-Bu in toluene at 120 °C (Scheme 92) [97]. Typically, reactions performed under conventional heating at 120 °C (oil bath) were still progressing after 16 h and were essentially complete by 24 h, whereas the microwave reactions appeared to be finished after 10 min. The same reaction conditions were also useful to functionalize 5- and 8-bromoquinolines with anilines and aliphatic amines (Schemes 93 and 94). Remarkably, no product formation was observed with 5-bromo-8-cyanoquinoline and 5-bromo-8-methoxyquinoline under conventional heating for 24 h at the same temperature, while the desired 5-aminoquinolines were smoothly obtained under microwave irradiation in a reaction time of only 10 min. [Pg.201]

Abstract Controlled microwave heating has foimd many important applications in the synthesis of heterocycles. Almost all kinds of heterocycles have been prepared (or their preparation attempted) with the aid of microwaves. Many examples of cyclocondensations, reactions where two or more fimctional groups combine with the loss of another small molecule (usually water), have been described. Moreover, microwave irradiation successfully induces cycloaddition reactions, especially in the cases where high temperatures are required. This review collects the most representative examples of the application of microwaves to these two kinds of transformations. Except for a few examples, all the reactions selected have been carried out imder controlled microwave irradiation using dedicated instruments. [Pg.214]


See other pages where Microwave irradiation temperature is mentioned: [Pg.17]    [Pg.20]    [Pg.24]    [Pg.42]    [Pg.54]    [Pg.55]    [Pg.69]    [Pg.73]    [Pg.85]    [Pg.87]    [Pg.88]    [Pg.98]    [Pg.99]    [Pg.101]    [Pg.109]    [Pg.111]    [Pg.135]    [Pg.136]    [Pg.137]    [Pg.143]    [Pg.144]    [Pg.146]    [Pg.148]    [Pg.149]    [Pg.158]    [Pg.161]    [Pg.163]    [Pg.170]    [Pg.173]    [Pg.178]    [Pg.184]    [Pg.191]    [Pg.203]    [Pg.208]    [Pg.215]    [Pg.215]    [Pg.233]   
See also in sourсe #XX -- [ Pg.515 ]




SEARCH



Irradiation temperature

Microwave irradiation

Temperature microwave

© 2024 chempedia.info