Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microscopic physics

The miderstanding of molecular motions is necessarily based on quaiitum mechanics, the theory of microscopic physical behaviour worked out in the first quarter of the 20th century. This is because molecules are microscopic systems in which it is impossible—or at least very dangerous —to ignore the dual wave-particle nature of matter first recognized in quaiitum theory by Einstein (in the case of classical waves) and de Broglie (in the case of classical particles). [Pg.54]

CHEOPS is based on the method of atomic constants, which uses atom contributions and an anharmonic oscillator model. Unlike other similar programs, this allows the prediction of polymer network and copolymer properties. A list of 39 properties could be computed. These include permeability, solubility, thermodynamic, microscopic, physical and optical properties. It also predicts the temperature dependence of some of the properties. The program supports common organic functionality as well as halides. As, B, P, Pb, S, Si, and Sn. Files can be saved with individual structures or a database of structures. [Pg.353]

RT = 1.35kcal/mol at room temperature. This is an important thermodynamic relation, as it relates microscopic physical theories (which serve as the basis for computational models) to experimentally measurable quantities. [Pg.347]

Abstract This review reports on the study of the interplay between magnetic coupling and spin transition in 2,2 -bipyrimidine (bpym)-bridged iron(II) dinuclear compounds. The coexistence of both phenomena has been observed in [Fe(bpym)(NCS)2]2(bpym), [Fe(bpym)(NCSe)2]2(bpym) and [Fe(bt)(NCS)2]2(bpym) (bpym = 2,2 -bipyrimidine, bt = 2,2 -bithiazoline) by the action of external physical perturbations such as heat, pressure or electromagnetic radiation. The competition between magnetic exchange and spin crossover has been studied in [Fe(bpym)(NCS)2]2(bpym) at 0.63 GPa. LIESST experiments carried out on [Fe(bpym)(NCSe)2]2(bpym) and [Fe(bt)(NCS)2]2(bpym) at 4.2 K have shown that it is possible to generate dinuclear molecules with different spin states in this class of compounds. A special feature of the spin crossover process in the dinuclear compounds studied so far is the plateau in the spin transition curve. Up to now, it has not been possible to explore with a microscopic physical method the nature of the species... [Pg.182]

The identification of ivory and ivory substitutes is based on the (55) physical and chemical class characteristics of these materials. A common approach to identification is to use the macroscopic and microscopic physical characteristics of ivory in combination with a simple chemical test using ultraviolet light. [Pg.200]

Other explanations of the nature of the polymer to metal bond include mechanical adhesion due to microscopic physical interlocking of the two faces, chemical bonding due to acid/base reactions occuring at the interface, hydrogen bonding at the interface, and electrostatic forces built up between the metal face and the dielectric polymer. It is reasonable to assume that all of these kinds of interactions, to one degree or another, are needed to explain the failure of adhesion in the cathodic delamination process. [Pg.171]

The coordination numbers based on this structure work extremely well for describing the microscopic physical properties of this material, including the Mossbauer I.S.s of the surface sites and of the specific heat of the clusters below about 65 K. No linear electronic term in the specific heat is seen down to 60 mK, due to the still significant T contribution from the center-of-mass motion still present at this temperature. The Schottky tail which develops below 300 mK in magnetic fields above 0.4 T has been quantitatively explained by nuclear quadrupole contributions. [Pg.34]

In general, various types of traps and recombination centers may be present, and their involvement in the reaction kinetic process will greatly change with temperature. The temperature range in which a specific range dominates must, therefore, be determined. This is most conveniently achieved with the aid of nonisothermal temperature scans, during which TSL and TSC are monitored. Of course, the microscopic physical and chemical nature of traps cannot be determined with these methods. [Pg.9]

Macroscopic treatments of diffusion result in continuum equations for the fluxes of particles and the evolution of their concentration fields. The continuum models involve the diffusivity, D, which is a kinetic factor related to the diffusive motion of the particles. In this chapter, the microscopic physics of this motion is treated and atomistic models are developed. The displacement of a particular particle can be modeled as the result of a series of thermally activated discrete movements (or jumps) between neighboring positions of local minimum energy. The rate at which each jump occurs depends on the vibration rate of the particle in its minimum-energy position and the excitation energy required for the jump. The average of such displacements over many particles over a period of time is related to the macroscopic diffusivity. Analyses of random walks produce relationships between individual atomic displacements and macroscopic diffusivity. [Pg.145]

Above all, don t be timid in the ambitiousness with which you ask questions. If you want to see the completed solution in a three-dimensional image, or to project yourself forward in time, or view some microscopic physical process, or view something not visible to your physical eyes, or re-experience some event out of the past, by all means ask. Don t let your questions be limited by your notion of what can and what cannot happen. [Pg.245]


See other pages where Microscopic physics is mentioned: [Pg.944]    [Pg.9]    [Pg.315]    [Pg.563]    [Pg.138]    [Pg.89]    [Pg.417]    [Pg.419]    [Pg.3]    [Pg.14]    [Pg.136]    [Pg.209]    [Pg.209]    [Pg.62]   


SEARCH



Microscopic physics diffusive modes

Microscopic physics, bacteriorhodopsin

Quantum physics microscopic techniques

© 2024 chempedia.info