Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microorganisms, secondary metabolites

Figure 2 Terrestrial plant and soil microorganism secondary metabolites currently used as drugs... Figure 2 Terrestrial plant and soil microorganism secondary metabolites currently used as drugs...
One possible reason for the existenee of stomach-cancer-producing soils is the production of cancer-causing secondary metabolites by plants and microorganisms. Secondary metabolites are biochemieal eompounds that are of no apparent use to the organism producing them. It is believed that they are formed from the precursors of primary metabolites when the primary metabolites accumulate to excessive levels. [Pg.567]

The held of marine natural products chemistry, which encompasses the study of the chemical structures and biological activities of secondary metabolites produced by marine plants, animals, and microorganisms, began in earnest in the early 1960s. " This is in stark contrast to the study of terrestrial plant natural... [Pg.61]

The underlying assumption driving marine natural products chemistry research is that secondary metabolites produced by marine plants, animals, and microorganisms will be substantially different from those found in traditional terrestrial sources simply because marine life forms are very different from terrestrial life forms and the habitats which they occupy present very different physiological and ecological challenges. The expectation is that marine organisms will utilize completely unique biosynthetic pathways or exploit unique variations on well established pathways. The marine natural products chemistry research conducted to date has provided many examples that support these expectations. [Pg.63]

Biotechnological processes may be divided into fermentation processes and biotransformations. In a fermentation process, products are formed from components in the fermentation broth, as primary or secondary metabolites, by microorganisms or higher cells. Product examples are amino acids, vitamins, or antibiotics such as penicillin or cephalosporin. In these cases, co-solvents are sometimes used for in situ product extraction. [Pg.336]

Microorganisms have been identified and exploited for more than a century. The Babylonians and Sumerians used yeast to prepare alcohol. There is a great history beyond fermentation processes, which explains the applications of microbial processes that resulted in the production of food and beverages. In the mid-nineteenth century, Louis Pasteur understood the role of microorganisms in fermented food, wine, alcohols, beverages, cheese, milk, yoghurt and other dairy products, fuels, and fine chemical industries. He identified many microbial processes and discovered the first principal role of fermentation, which was that microbes required substrate to produce primary and secondary metabolites, and end products. [Pg.1]

Phenazines — This large class of compounds includes more than 6,000 natural and synthetic representatives. Natural phenazines are secondary metabolites of certain soil and marine microorganisms. The main phenazine producers are Pseudomonas and Streptomyces species. Pseudomonas strains produce the most simple phenazines tubermycin B (phenazine-1-carboxylic acid), chlororaphine, pyocyanin, and iodinine. Pyocyanin is a blue pigment while chlororaphine is green both are produced by Pseudomonas aeruginosa. They can be seen in infected wounds of animal and human skins. Iodinine is a purple phenazine produced by Pseudomonas aureofaciens. [Pg.112]

The occurrence in some plants of secondary metabolites characterized by an 0-heterocyclic structure and exhibiting antimicrobial properties is a well-known phenomenon [2,8-10]. Among them, catechins and proanthocyanidins are two classes of compounds exhibiting antimicrobial properties towards both prokaryotic and eukaryotic microorganisms. Yet, despite the large number of studies published so far, the real potentialities and limitations given by the use of this class of molecules as antiviral or antimicrobial (antibacterial, antimycotic, antiprotozoal) agents have not been critically evaluated. The present chapter represents an overview of the re-... [Pg.240]

I. PRODUCTION OF ANTIBIOTICS. The production of secondary metabolites with antimicrobial properties has long been recognized as an important factor in disease suppression (see Chap. 7). Metabolites with biocontrol properties have been isolated from a large number of rhizosphere microorganisms, including the fluorescent pseudomonads (Table 2). Further discussion is not given here since this is the subject of recent reviews (122,123). [Pg.108]

Figure 11.1 Representative secondary metabolites produced by Streptomyces ceolicolor and other microorganisms, including aromatic polyketides actinorhodin and tetrohydroxynaphthalene (a), side-rophore desferrioxamines (b), polyunsaturated fatty acid eicosapentaenoic acid (c) and terpenoids beta-... Figure 11.1 Representative secondary metabolites produced by Streptomyces ceolicolor and other microorganisms, including aromatic polyketides actinorhodin and tetrohydroxynaphthalene (a), side-rophore desferrioxamines (b), polyunsaturated fatty acid eicosapentaenoic acid (c) and terpenoids beta-...
The general metabolism of sulfur, extensively described in many texts of biological sciences, is not considered in this article some topics (e.g. metallo-enzymes) are discussed elsewhere in this volume (Chapter 11.2). Our focus is on sulfur-containing secondary metabolites in microorganisms and plants. In view of the vast literature, we can only provide an eclectic account citing recent work where possible. [Pg.672]

Allelopathy is defined as biochemical interactions between one plant or microorganism (alga, bacteria, or virus) and another plant through the production of chemical compounds - secondary metabolites (allelochemicals), which influence, direct or indirect, harmful or beneficial, plant growth and development (Rice 1984). Allelochemicals are present in almost all plants and in many tissues, like leaves, stems, flowers, fruits, seeds, roots, or pollen and may be released from plants into the environment by volatilization, leaching, root exudation, and decomposition of plant residues (Chou 1990). [Pg.381]


See other pages where Microorganisms, secondary metabolites is mentioned: [Pg.78]    [Pg.86]    [Pg.78]    [Pg.78]    [Pg.86]    [Pg.78]    [Pg.55]    [Pg.55]    [Pg.60]    [Pg.63]    [Pg.22]    [Pg.264]    [Pg.263]    [Pg.185]    [Pg.350]    [Pg.115]    [Pg.100]    [Pg.239]    [Pg.71]    [Pg.266]    [Pg.63]    [Pg.63]    [Pg.68]    [Pg.71]    [Pg.245]    [Pg.6]    [Pg.24]    [Pg.45]    [Pg.676]    [Pg.148]    [Pg.210]    [Pg.406]    [Pg.27]    [Pg.230]    [Pg.257]    [Pg.261]    [Pg.601]    [Pg.602]   


SEARCH



Microorganisms metabolites

Secondary metabolites

© 2024 chempedia.info