Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microcatheters Applications

Fig. 21.2. Two-microelectrode current-clamp technique used to observe, in single Ascaris body muscle cells in a body-flap preparation, the response to a controlled pulsed application of levamisole. One micropipette, to measure membrane potential, and another micropipette, to inject current, are inserted inside the area of the muscle cell known as the bag region. Levamisole is applied in a time- and pressure-controlled manner from a microcatheter placed over the bag region of the muscle. A second microcatheter is used to apply additional chemical agents (Martin, 1982). Fig. 21.2. Two-microelectrode current-clamp technique used to observe, in single Ascaris body muscle cells in a body-flap preparation, the response to a controlled pulsed application of levamisole. One micropipette, to measure membrane potential, and another micropipette, to inject current, are inserted inside the area of the muscle cell known as the bag region. Levamisole is applied in a time- and pressure-controlled manner from a microcatheter placed over the bag region of the muscle. A second microcatheter is used to apply additional chemical agents (Martin, 1982).
Shape memory polymers make up another class of injectable biomaterials for vascular applications, yet are relatively new in the field of endovascular embolization. Shape memory polymers are chemically structured so that they are able to reversibly take on a different physical shape in response to some stimuli (Small et al, 2007). Usually these different shapes include a compact form and an expanded form of the polymer. In the case of endovascular embolization, the expanded polymer can be pre-formed to fit specific contours of an individual aneurysm (Ortega et al, 2007). Upon interacting with some type of stimuli, such as heat or cold, the material is compacted into a shape that can be delivered through a microcatheter. The process of using shape memory polymers to embolize an aneurysm is shown in Fig. 7.5, along with samples of expanded SMPs (Ortega et al, 2007). [Pg.197]

Aoyagi W, Omiya M (2013) Mechanical and electrochemical properties of an IPMC actuator with palladium electrodes in acid and alkaline solutions. Smart Mater Struct 22 055028 (10 pp) Asaka K, Oguro K (2000) Bending of Polyelectrolyte Membrane-platinum composites by electric stimuli. Part II. Response kinetics. I Electroanal Chem 480 186-198 Asaka K, Oguro K (2009a) IPMC actuators fundamentals. In Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. Wiley, Chichester, pp 103-119 Asaka K, Oguro K (2009b) Active microcatheter and biomedical soft devices based on IPMC actuators. In Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. Wiley, Chichester, pp 103-119... [Pg.147]

Anton M, Aabloo A, Punning A, Kruusmaa M (2008) A mechanical model of a non-uniform ionomeric polymer metal eomposite actuator. Smart Mater Struct 17(2) 25001-25004 Asaka K, Oguro K (2009) Active microcatheter and biomedical soft devices based on IPMC actuators. In Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. [Pg.232]


See other pages where Microcatheters Applications is mentioned: [Pg.26]    [Pg.3210]    [Pg.504]    [Pg.339]    [Pg.343]    [Pg.23]    [Pg.28]    [Pg.146]    [Pg.204]    [Pg.237]    [Pg.121]    [Pg.124]    [Pg.91]    [Pg.278]   


SEARCH



Applications to the Microcatheter

Microcatheter

© 2024 chempedia.info