Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael thiols

Glycosidic thiol groups can be introduced into glycosyl bromides by successive reactions with thiourea and aqueous sodium disulfite (D. Horton, 1963 M. Cemy, 1961, 1963). Such thiols are excellent nucleophiles in weakly basic media and add to electrophilic double bonds, e.g., of maleic esters, to give Michael adducts in high yields. Several chiral amphiphiles have thus been prepared without any need for chromatography (J.-H. Fuhrhop, 1986 A). [Pg.269]

Thiols can be prepared by a variety of methods. The most-utilised of these synthetic methods for tertiary and secondary thiols is acid-catalysed synthesis for normal and secondary thiols, the most-utilised methods are free-radical-initiated, alcohol substitution, or halide substitution for mercaptoalcohols, the most-utilised method is oxhane addition and for mercaptoacids and mercaptonitnles, the most-utilised methods are Michael-type additions. [Pg.10]

The Michael addition reaction of amines and thiols with bismaleimides or functionalized monomaleimides is a versatile tool ia the synthesis of chain-extended maleimide-terroinated prepolymers. These prepolymers generally are soluble ia organic solvents from which they can be processed to prepreg and molded to high quaUty, void-free laminates. [Pg.27]

HSCH2CH2SH, Zn(OTf)2 or Mg(OTf)2, CICH2CH2CI, heat, 16 h, 85-99% yield.o ,l3-Unsaturated ketones such as carvone are not cleanly converted to ketals because of Michael addition of the thiol. ... [Pg.202]

A thiol, usually under basic catalysis, can undergo Michael addition to an activated double bond, resulting in protection of the sulfhydryl group as a substituted 5-ethyl derivative. [Pg.295]

Synthesis of thiopheno[3,4-c isoxa2olide is shown in Eq. 4.4, in which the Michael addidon of allyl thiol to fi-nitro enones and subsequent nitnle oxide cyclizadon are involved. ... [Pg.72]

Furthermore, a neighboring group participadon of a phenylthio funcdon is observed in the Lewis acid-catalyzed nucleophiEc subsdnidon reacdon of various fi-nitrosulfides. Because the fi-nitrosulfides are readily available, by the Michael addidon of thiols to nitroalkenes fsee Michael addidon Chapter 4, this reacdon is very useful. The fi-nitrosulfides are prepared stereoselecdvely, and the reacdon proceeds in a stereo-specific way fretendonof configiuadoni as shown in Eqs. 31 -34. [Pg.190]

When thiols are added to substrates susceptible to nucleophilic attack, bases catalyze the reaction and the mechanism is nucleophilic. These substrates may be of the Michael type or may be polyhalo alkenes or alkynes. As with the free-radical mechanism, alkynes can give either vinylic thioethers or dithioacetals ... [Pg.999]

The starting material was thiol (27) whose synthesis appears on page 25, Michael addition to... [Pg.200]

In a similar way, lipases catalyze Michael addition of amines, thiols [110], and even 1,3-dicarbonyl derivatives [111, 112] to a,/ -unsaturated carbonyl compounds (Scheme 5.21). [Pg.113]

By using 10 mol% of 51, MS4A, and t-BuSH, the desired product 52 was obtained in up to 98% ee in 80% yield. A complementary role by two metals (Ga and Li) in activating and positioning both of the substrates has been proposed. The MS4A (sodium aluminosilicate) accelerated the reaction however, the actual role of this additive was not clearly defined, although the possibilty that MS4A delivers Na ions was pointed out. Tomioka et al. reported the asymmetric Michael addition of an aromatic thiol to a,P-unsaturated esters in the presence of 8 mol% of 53 to provide 54 in up to 97% ee in 99% yield (Eq. 7.40) [47]. [Pg.232]

By using LaNa3-tris(binaphthoxide) (LSB) 55, catalytic asymmetric Michael addition of thiols to cycloalkenones took place to provide the adduct 56 with high ees in good yields (Eq. 7.41) [48]. [Pg.232]

A thio-substituted, quaternary ammonium salt can be synthesized by the Michael addition of an alkyl thiol to acrylamide in the presence of benzyl trimethyl ammonium hydroxide as a catalyst [793-795]. The reaction leads to the crystallization of the adducts in essentially quantitative yield. Reduction of the amides by lithium aluminum hydride in tetrahydrofuran solution produces the desired amines, which are converted to desired halide by reaction of the methyl iodide with the amines. The inhibitor is useful in controlling corrosion such as that caused by CO2 and H2S. [Pg.92]

Thiolates, generated in situ by the action of ammonium tetra-thiomolybdate on alkyl halides, thiocyanates, and disulfides, undergo conjugate addition to a, (1-unsaturatcd esters, nitriles, and ketones in water under neutral conditions (Eq. 10. II).29 Conjugate addition of thiols was also carried out in a hydrophobic ionic liquid [bmim]PF6/water-solvent system (2 1) in the absence of any acid catalyst to afford the corresponding Michael adducts in high to quantitative yields with excellent 1,4-selectivity under mild and neutral conditions (Eq. 10.12). The use of ionic liquids helps to avoid the use of either acid or base catalysts... [Pg.318]

Amines, thiols, eOH (p. 226), etc., will also add to the 0-carbon atom of 0-unsaturated carbonyl compounds and esters, but the most important reactions of C=C—C=0 systems are in Michael reactions with carbanions reactions in which carbon-carbon bonds are formed. A good example is the synthesis of l,l-dimethylcyclohexan-3,5-dione (dimedone, 100) starting from 2-methylpent-2-ene-4-one (mesityl oxide, 101) and the carbanion 0CH(CO2Et)2 ... [Pg.202]

Ono and Kamimura have found a very simple method for the stereo-control of the Michael addition of thiols, selenols, or alcohols. The Michael addition of thiolate anions to nitroalkenes followed by protonation at -78 °C gives anti-(J-nitro sulfides (Eq. 4.8).11 This procedure can be extended to the preparation of a/jti-(3-nitro selenides (Eq. 4.9)12 and a/jti-(3-nitro ethers (Eq. 4.10).13 The addition products of benzyl alcohol are converted into P-amino alcohols with the retention of the configuration, which is a useful method for anri-P-amino alcohols. This is an alternative method of stereoselective nitro-aldol reactions (Section 3.3). The anti selectivity of these reactions is explained on the basis of stereoselective protonation to nitronate anion intermediates. The high stereoselectivity requires heteroatom substituents on the P-position of the nitro group. The computational calculation exhibits that the heteroatom covers one site of the plane of the nitronate anion.14... [Pg.73]

Barrett and coworkers have explored hetero-substituted nitroalkenes in organic synthesis. The Michael addition of nucleophiles to 1-alkoxynitroalkenes or 1-phenylthionitroalkenes followed by oxidative Nef reaction (Section 6.1) using ozone gives a-substituted esters or thiol esters, respectively.41 As an alternative to nucleophilic addition to l-(phenylthio)-nitroalkenes, Jackson and coworkers have used the reaction of nucleophiles with the corresponding epoxides (Scheme 4.4).42 Because the requisite nitroalkenes are readily prepared by the Henry reaction (Chapter 3) of aldehydes with phenylthionitromethane, this process provides a convenient tool for the conversion of aldehydes into ot-substituted esters or thiol esters. [Pg.80]

Ono and coworkers have extended the radical elimination of v/c-dinitro compounds to P-nitro sulfones151 and P-nitro sulfides.138,152 As P-nitro sulfides are readily prepared by the Michael addition of thiols to nitroalkenes, radical elimination of P-nitrosulfides provides a useful method for olefin synthesis. For example, cyclohexanone is converted into allyl alcohol by the reaction shown in Eq. 7.110. Treatment of cyclohexanone with a mixture of nitromethane, PhSH, 35%-HCHO, TMG (0.1 equiv) in acetonitrile gives ahydroxymethylated-P-nitro sulfide in 68% yield, which is converted into the corresponding allyl alcohol in 86% yield by the reaction with Bu3SnH.138 Nitro-aldol and the Michael addition reactions take place sequentially to give the required P-nitro sulfides in one pot. [Pg.216]

A series of 3-oxothiophene derivatives has been prepared by intramolecular thia-anti-Michael addition of a thiol anion to an enone functionality, resulting for instance in preparation of the target 20 by treatment of the precursor 21 with an amine <06JOC8006>. [Pg.115]

A diverse group of organic reactions catalyzed by montmorillonite has been described and some reviews on this subject have been published.19 Examples of those transformations include addition reactions, such as Michael addition of thiols to y./bunsatu rated carbonyl compounds 20 electrophilic aromatic substitutions,19c nucleophilic substitution of alcohols,21 acetal synthesis196 22 and deprotection,23 cyclizations,19b c isomerizations, and rearrangements.196 24... [Pg.33]

Von Sonntag and coworkers14 repeated Michael and Hart s study of the reaction of OH radical with 1,3- and 1,4-cyclohexadienes and extended it. They found that in the case of 1,4-cyclohexadiene, 50% of the OH radicals abstract an hydrogen atom, while only about 25% of the OH radicals abstract an hydrogen atom from 1,3-cyclohexadiene. The remaining OH radicals probably add to the double bond. The addition to the double bond was confirmed by final products analysis in the case of the 1,4-isomer. When N20-saturated aqueous solution of 1,4-cyclohexadiene (10-2 M) together with lower (10-4 M) concentration of the thiol (1,4-dithiothreitol) was y-radiolysed, it was found that 4-hydroxycyclohexene was produced with a yield of 0.29 prnol J 1, i.e. a yield of 50% of the OH radicals (equation 9). [Pg.329]

The attack by the thiolate anion on the N-oxide oxygen of 62 produces the intermediate sulfenic acid derivative 65, which, in the presence of thiols, further reacts with the thiolate anion, to give the oxime 66, which has been isolated among the reaction products. By contrast, spontaneous loss of the halide anion from 65 affords the ni-troso intermediate 67 that, by losing NO and the thiyl radical directly, or through 68, produces the a-nitrosoolefm 69. By a Michael type reaction with water this last product immediately yields the final oxime 70, which has been isolated among the reaction products. [Pg.150]

E Emori, T. Arai, H. Sasai, M Shibasaki, A Catalytic Michael Addition of Thiols to a, -Unsaturated Carbonyl Compounds Asymmetric Protonations, J. Am Chem Soc 1998,120, 4043-4044. [Pg.120]


See other pages where Michael thiols is mentioned: [Pg.187]    [Pg.187]    [Pg.169]    [Pg.70]    [Pg.73]    [Pg.80]    [Pg.152]    [Pg.216]    [Pg.45]    [Pg.256]    [Pg.97]    [Pg.1000]    [Pg.329]    [Pg.358]    [Pg.143]    [Pg.319]    [Pg.57]    [Pg.70]    [Pg.152]    [Pg.489]    [Pg.470]    [Pg.681]    [Pg.207]   
See also in sourсe #XX -- [ Pg.578 ]




SEARCH



Michael addition of thiols

Michael addition thiols

Michael-type addition thiols

Michael-type reactions thiols

Thiol Michael addition

Thiol based click Michael addition

Thiol-Michael addition reaction

Thiol-derived Michael adducts

© 2024 chempedia.info