Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael reactions proline catalysis

This overview about developments in the field of proline-catalysis unfortunately cannot take into full account the vast field of proline-derived catalysts, such as diarylprolinols, 4-silo)yprolines or proline-silyl-ether, to name only a few. These are covered in subsequent chapters of this volume. Furthermore, other great improvements have been made by using immobilised proline catalysts, such as PEG-supported proline or polyelectrolyte-bound pro-line. Going one step further, supported proline catalysts are then applicable in the striving field of continuous-flow reactions. Recent examples include aldol, a-amination reactions and Michael reactions under such conditions. ... [Pg.116]

Probably the most outstanding work in iminium catalysis before its rebirth in 2000 was the synthesis of erythromycin reported by Woodward et al. [7]. In this work. Woodward applied proline catalysis in a triple organocascade reaction consisting of a deracemization (via a retro-Michael, Michael addition) and an intramolecular aldol reaction that determines the stereochemical output of the reaction (Scheme 33.2). [Pg.978]

Barbas, one of the pioneers of enamine catalysis, has incorporated iminium ion intermediates in complex heterodomino reactions. One particularly revealing example that uses the complementary activity of both iminium ion and enamine intermediates is shown in Fig. 12 [188]. Within this intricate catalytic cycle the catalyst, L-proline (58), is actively involved in accelerating two iminium ion catalysed transformations a Knoevenagel condensation and a retro-Michael/Michael addition sequence, resulting in epimerisation. [Pg.323]

On the basis of encouraging work in the development of L-proline-DMSO and L-proline-ionic liquid systems for practical asymmetric aldol reactions, an aldolase antibody 38C2 was evaluated in the ionic liquid [BMIM]PF6 as a reusable aldolase-ionic liquid catalytic system for the aldol synthesis of oc-chloro- 3-hydroxy compounds (288). The biocatalytic process was followed by chemical catalysis using Et3N in the ionic liquid [BMIM]TfO at room temperature, which transformed the oc-chloro-(3-hydroxy compounds to the optically active (70% ee) oc, (3-epoxy carbonyl compounds. The aldolase antibody 38C2-ionic liquid system was also shown to be reusable for Michael additions and the reaction of fluoromethylated imines. [Pg.228]

L-Proline is perhaps the most well-known organocatalyst. Although the natural L-form is normally used, proline is available in both enantiomeric forms [57], this being somewhat of an asset when compared to enzymatic catalysis [58], Proline is the only natural amino acid to exhibit genuine secondary amine functionality thus, the nitrogen atom has a higher p Ka than other amino acids and so features an enhanced nucleophilicity compared to the other amino acids. Hence, proline is able to act as a nucleophile, in particular with carbonyl compounds or Michael acceptors, to form either an iminium ion or enamine. In these reactions, the carboxylic function of the amino acid acts as a Bronsted acid, rendering the proline a bifunctional catalyst. [Pg.9]

Surprisingly, little follow-up work on this idea of small molecule asymmetric catalysis appeared for the next 25 years. In the late 1980s, Agami reported the asymmetric intramolecular aldol reaction of acyclic diketones with (S)-proline as the catalyst. It was not nntil the twenty-first centnry, however, when this notion of organocatalysts became fnlly exploited. List and Barbas ° pioneered enam-ines as catalysts for aldol and Mannich and related reactions. MacMillan has developed a variety of imininm-based catalysts prodncing large asymmetric indnction for Diels-Alder chemistry, Friedel-Crafts alkylations, Mnkaiyama-Michael and cyclopropanation " reactions. [Pg.405]

In conclusion, Kappe s group demonstrated the absence of any differences between conventional and microwave heating in proline-catalyzed Mannich and aldol reactions as well as no evidence for specific or non-thermal microwave effects. In all cases, in contrast to the previous literature reports, the results obtained with microwave irradiation could be reproduced by conventional heating at the same reaction temperature and time in an oil bath. The differences observed in previous publications could be a result of incorrect temperature measurements [36]. After Kappe s [35] publication several articles appeared in the literature concerning the application of microwaves in asymmetric organocatalysis, mostly in aldol and Michael type reactions operating via enamine as well as iminium catalysis. [Pg.595]

In addition to imininm-initiated cascade reactions, two of the steps in enamine-activated cascade reactions can also be enforced by cycle-specific catalysis. It is well known that diphenylprolinol silyl ether catalyst 34 is optimal for diverse enamine-mediated transformations to fnmish prodncts with high enantioselectivities. However, similar to imidazolidinone catalysts, it proved to be less effective or ineffective for bifunctional enamine catalysis. Cycle-specific catalysis via an aza-Michael/Mannich sequence by combining 34 and either enantiomer of proline was thus developed to generate 206 in about 60% yields with excellent diastereo- and enantioselectivities (Scheme 1.89) [139]. [Pg.45]

The enamine (/dienamine)-iminium cycle-specific cascade catalysis is an important constituent of amine-catalyzed cascade reactions [10]. This strategy has been explored extensively and also applied to natural product synthesis. One such example is the total synthesis of dihydrocorynantheol, which was first isolated from the bark of Aspidosperma marcgravianum in 1967 [29]. This indole alkaloid is a member of the corynantheine and was found to exhibit antiparasitic, antiviral, or analgetic activities, which have attracted considerable attention from the synthetic community. Among those reported total syntheses, Itoh et al. developed a Mannich-Michael cascade reaction catalyzed by L-proline 52 for the total synthesis of ent-dihydrocorynantheol 54 (Scheme 3.8) [30], The cascade reaction of 3-ethyl-3-buten-2-one 51 with dihydro-P-carboline 50 catalyzed by 30mol% of (S)-proline afforded the tetracyclic core structure 53 in 85% yield. Excellent stereoselectivity was achieved in this cascade reaction (99% enantiomeric excess and almost complete diastereomeric control). Therefore, this organocascade reaction could lead expeditiously to construction of the core structure, which enabled the authors to accomplish the total synthesis of enl-dihydrocorynantheol 54 in just five steps. [Pg.132]


See other pages where Michael reactions proline catalysis is mentioned: [Pg.329]    [Pg.162]    [Pg.20]    [Pg.100]    [Pg.1107]    [Pg.107]    [Pg.21]    [Pg.325]    [Pg.135]    [Pg.325]    [Pg.791]    [Pg.179]    [Pg.61]    [Pg.313]    [Pg.712]    [Pg.712]    [Pg.379]    [Pg.402]    [Pg.61]    [Pg.3]    [Pg.79]    [Pg.49]    [Pg.208]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 , Pg.9 , Pg.10 , Pg.11 , Pg.12 ]




SEARCH



Catalysis Michael reaction

Proline catalysis

© 2024 chempedia.info