Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition enantioselective catalysis

Jautze S, Peters R (2008) Enantioselective bimetallic catalysis of Michael additions forming quaternary stereocenters. Angew Chem Int Ed 47 9284-9288... [Pg.173]

The utilization of copper complexes (47) based on bisisoxazolines allows various silyl enol ethers to be added to aldehydes and ketones which possess an adjacent heteroatom e.g. pyruvate esters. An example is shown is Scheme 43[126]. C2-Symmetric Cu(II) complexes have also been used as chiral Lewis acids for the catalysis of enantioselective Michael additions of silylketene acetals to alkylidene malonates[127]. [Pg.32]

To date, hydrogen bond catalysis has been successfully utilized to facilitate enantioselective Michael additions, Baylis-Hillman reactions, Diels-Alder cycloadditions, and additions of 7i-nucleophiles to imines. [Pg.332]

The majority of the Michael-type conjugate additions are promoted by amine-based catalysts and proceed via an enamine or iminium intermediate species. Subsequently, Jprgensen et al. [43] explored the aza-Michael addition of hydra-zones to cyclic enones catalyzed by Cinchona alkaloids. Although the reaction proceeds under pyrrolidine catalysis via iminium activation of the enone, and also with NEtj via hydrazone activation, both methods do not confer enantioselectivity to the reaction. Under a Cinchona alkaloid screen, quinine 3 was identified as an effective aza-Michael catalyst to give 92% yield and 1 3.5 er (Scheme 4). [Pg.151]

The same group utilized thiourea 12 (10mol% loading) for the catalysis of the enantioselective Michael addition of thioacetic acid to various chalcones [214]. At room temperature and otherwise unchanged conditions, in comparison to the... [Pg.210]

The copper-catalyzed enantioselective Michael addition of organometallic reagents to enones was the first successful application of phosphoramidite chiral ligands in catalysis [4, 43]. Since this early report, substantial enhancement of the enantioselectivity and/or of the substrate scope has been achieved through an untiring effort to optimize the ligand structure [5a, 44]. [Pg.267]

Enantioselective Michael addition of glycine derivatives by means of chiral phase-transfer catalysis has been developed to synthesize various functionalized a-alkyl-a-amino acids. Corey utilized 4d as catalyst for asymmetric Michael addition of glycinate Schiff base 1 to a,(3-unsaturated carbonyl substrates with high enantioselectivity (Scheme 2.15) [35,36]. With methyl acrylate as an acceptor, the a-tert-butyl-y-methyl ester of (S)-glutamic acid can be produced, a functionalized glutamic acid... [Pg.22]

Jew and Park achieved a highly enantioselective synthesis of (2S)-a-(hydroxy-methyljglutamic acid, a potent metabotropic receptor ligand, through the Michael addition of 2-naphthalen-l-yl-2-oxazoline-4-carboxylic acid tert-butyl ester 72 to ethyl acrylate under phase-transfer conditions [38]. As shown in Scheme 5.36, the use of BEMP as a base at —60 °C with the catalysis of N-spiro chiral quaternary ammonium bromide le appeared to be essential for attaining an excellent selectivity. [Pg.100]

Taddol has been widely used as a chiral auxiliary or chiral ligand in asymmetric catalysis [17], and in 1997 Belokon first showed that it could also function as an effective solid-liquid phase-transfer catalyst [18]. The initial reaction studied by Belokon was the asymmetric Michael addition of nickel complex 11a to methyl methacrylate to give y-methyl glutamate precursors 12 and 13 (Scheme 8.7). It was found that only the disodium salt of Taddol 14 acted as a catalyst, and both the enantio- and diastereos-electivity were modest [20% ee and 65% diastereomeric excess (de) in favor of 12 when 10 mol % of Taddol was used]. The enantioselectivity could be increased (to 28%) by using a stoichiometric amount of Taddol, but the diastereoselectivity decreased (to 40%) under these conditions due to deprotonation of the remaining acidic proton in products 12 and 13. Nevertheless, diastereomers 12 and 13 could be separated and the ee-value of complex 12 increased to >85% by recrystallization, thus providing enantiomerically enriched (2S, 4i )-y-methyl glutamic add 15. [Pg.166]

The efficient homogeneous catalysis of chiral ammonium bifluorides of type 15 has been further utilized for achieving an asymmetric Michael addition of silyl nitronates to a,/ -unsaturated aldehydes. Here, chiral ammonium bifluoride 15b bearing a 3,5-di-tert-butylphenyl group was found to be the catalyst of choice, and the reaction of 16a with trans-cinnamaldehyde under the influence of (R,R)- 15b (2 mol%) in THF at —78 °C produced the 1,4-addition product 18 predominantly (18/19 = 24 1) as a diastereomeric mixture (syn/anti = 78 22) with 85% ee of the major syn isomer (Scheme 4.9). Further, use of toluene as solvent led to almost exclusive formation of the 1,4-adduct (18/19 = 32 1) with similar diastereoselec-tivity (syn/anti = 81 19), and critical enhancement of the enantioselectivity was attained (97% ee) [15]. [Pg.127]

Enantioselective Michael addition of glycine derivatives by means of chiral phase-transfer catalysis has been developed to synthesize various functionalized a-alkyl-amino acids. Corey and colleagues utilized 30d as a catalyst for the asymmetric... [Pg.141]

Catalytic Michael additions of a-nitroesters 38 catalyzed by a BINOL (2,2 -dihydroxy-l,r-bi-naphthyl) complex were found to yield the addition products 39 as precursors for a-alkylated amino acids in good yields and with respectable enantioselectivities (8-80%) as shown in Scheme 9 [45]. Asymmetric PTC (phase transfer catalysis) mediated by TADDOL (40) as a chiral catalyst has been used to synthesize enantiomeri-cally enriched a-alkylated amino acids 41 (up to 82 % ee) [46], A similar strategy has been used to access a-amino acids in a stereoselective fashion [47], Using azlactones 42 as nucleophiles in the palladium catalyzed stereoselective allyla-tion addition, compounds 43 were obtained in high yields and almost enantiomerically pure (Scheme 9) [48]. The azlactones 43 can then be converted into the a-alkylated amino acids as shown in Scheme 4. [Pg.31]

Spescha et al. [4] used the copper complex 6, which was obtained from a thioglucofuranose derivative, as catalyst for 1,4-additions of Grignard reagents to 3, and observed enantioselectivities of up to 60 % ee. The dihydrooxazolylthiophenolato copper complex 7 was employed by Pfaltz et al. 5] for the enantioselective catalysis of Michael additions to cyclic enones the best results were obtained with tetrahydrofuran as solvent and HMPA as additive. There was a pronounced dependence of the stereoselectivity on the ring size of the substrate 16-37 % ee for 2-cyclopente-none, 60-72 % ee for 3, and 83-87 % ee for 2-cycloheptenone. Alexakis et al. [6] used the heterocycle 8, which is readily accessible from... [Pg.183]

Roelfes s supramolecular assembly is one of the most efficient enan-tioselective catalysts for aqueous Michael additions. The DNA template approach has also been used for enantioselective Friedel-Crafts reactions in water, with outstanding results in terms of conversion and enantioselectivities (110). All these results confirm the impressive potential of DNA-based enantioselective catalysis. [Pg.110]

During the last decade, use of oxazaborolidines and dioxaborolidines in enantioselective catalysis has gained importance. [1, 2] One of the earliest examples of oxazaborolidines as an enantioselective catalyst in the reduction of ketones/ketoxime ethers to secondary alco-hols/amines was reported by Itsuno et al. [3] in which (5 )-valinol was used as a chiral ligand. Since then, a number of other oxazaborolidines and dioxaborolidines have been investigated as enantioselective catalysts in a number of organic transformations viz a) reduction of ketones to alcohols, b) addition of dialkyl zinc to aldehydes, c) asymmetric allylation of aldehydes, d) Diels-Alder cycloaddition reactions, e) Mukaiyama Michael type of aldol condensations, f) cyclopropana-tion reaction of olefins. [Pg.44]

Scheme 2.18 Enantioselective Michael addition of enolizable ot,p-unsaturated aldehydes to nitroalkenes via dienamine catalysis. Scheme 2.18 Enantioselective Michael addition of enolizable ot,p-unsaturated aldehydes to nitroalkenes via dienamine catalysis.

See other pages where Michael addition enantioselective catalysis is mentioned: [Pg.299]    [Pg.324]    [Pg.327]    [Pg.384]    [Pg.173]    [Pg.237]    [Pg.279]    [Pg.749]    [Pg.317]    [Pg.356]    [Pg.174]    [Pg.321]    [Pg.52]    [Pg.328]    [Pg.206]    [Pg.249]    [Pg.36]    [Pg.186]    [Pg.100]    [Pg.382]    [Pg.879]    [Pg.272]    [Pg.1162]    [Pg.1232]    [Pg.481]    [Pg.340]    [Pg.363]    [Pg.87]    [Pg.85]    [Pg.72]    [Pg.95]    [Pg.99]   


SEARCH



Additives catalysis

Enantioselective additions

Enantioselective catalysis

Michael addition catalysis

Michael enantioselective

Michael enantioselectivity

© 2024 chempedia.info