Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition catalysis

A similar approach is followed in a recent study of the Lewis-acid catalysis of a Michael addition in acetonitrile. See Fukuzumi, S. Okamoto, T. Yasui, K Suenobu, T. Itoh, S. Otera, J. Chem. Lett. 1997, 667. [Pg.73]

Addition of HCN to unsaturated compounds is often the easiest and most economical method of making organonitnles. An early synthesis of acrylonitrile involved the addition of HCN to acetylene. The addition of HCN to aldehydes and ketones is readily accompHshed with simple base catalysis, as is the addition of HCN to activated olefins (Michael addition). However, the addition of HCN to unactivated olefins and the regioselective addition to dienes is best accompHshed with a transition-metal catalyst, as illustrated by DuPont s adiponitrile process (6—9). [Pg.217]

A large number of hindered phenoHc antioxidants are based on the Michael addition of 2,6-di-/ f2 -butylphenol and methyl acrylate under basic catalysis to yield the hydrocinnamate which is a basic building block used in the production of octadecyl 3-(3,5-di-/ f2 butyl-4-hydroxyphenyl)propionate, [2082-79-3], tetrakis(methylene-3(3,5-di-/ f2 butyl-4-hydroxylphenyl)propionate)methane [6683-19-8], and many others (63,64). These hindered phenolic antioxidants are the most widely used primary stabilizers in the world and are used in polyolefins, synthetic and natural mbber, styrenics, vinyl polymers, and engineering resins. 2,6-Di-/ f2 -butylphenol is converted to a methylene isocyanate which is trimerized to a triazine derivative... [Pg.69]

Hydrogen cyanide adds to an olefinic double bond most readily when an adjacent activating group is present in the molecule, eg, carbonyl or cyano groups. In these cases, a Michael addition proceeds readily under basic catalysis, as with acrylonitrile (qv) to yield succinonitnle [110-61-2], C4H4N2, iu high yield (13). Formation of acrylonitrile by addition across the acetylenic bond can be accompHshed under catalytic conditions (see Acetylene-DERIVED chemicals). [Pg.376]

A thiol, usually under basic catalysis, can undergo Michael addition to an activated double bond, resulting in protection of the sulfhydryl group as a substituted 5-ethyl derivative. [Pg.295]

Lipases are the enzymes for which a number of examples of a promiscuous activity have been reported. Thus, in addition to their original activity comprising hydrolysis of lipids and, generally, catalysis of the hydrolysis or formation of carboxylic esters [107], lipases have been found to catalyze not only the carbon-nitrogen bond hydrolysis/formation (in this case, acting as proteases) but also the carbon-carbon bond-forming reactions. The first example of a lipase-catalyzed Michael addition to 2-(trifluoromethyl)propenoic acid was described as early as in 1986 [108]. Michael addition of secondary amines to acrylonitrile is up to 100-fold faster in the presence of various preparations of the hpase from Candida antariica (CAL-B) than in the absence of a biocatalyst (Scheme 5.20) [109]. [Pg.113]

Jautze S, Peters R (2008) Enantioselective bimetallic catalysis of Michael additions forming quaternary stereocenters. Angew Chem Int Ed 47 9284-9288... [Pg.173]

Some particular features should be mentioned. Instead of Michael additions, a-nitroolefins are reported to yield allyl sulfones under Pd catalysis (equation 21). Halogenated acceptor-olefins can substitute halogen P to the acceptor by ipso-substitution with sulfinate (equation 22 , equation 23 ) or can lose halogen a to the acceptor in the course of a secondary elimination occurring P to the introduced sulfonyl groups (equation 24). On the other hand, the use of hydrated sodium sulfinates can lead to cleavage at the C=C double bond (equation 25). [Pg.173]

Double Michael additions of nitro compounds bearing tethered acidic carbons to 3-butyn-2-one under NaH catalysis give nitrocyclohexanes with high stereoselectivity. The products are transformed into traws-fused bicyclic compounds via the Dickmann reaction on treatment with base. (Eq.4.129).176... [Pg.114]

Synthesis of isomeric chiral protected (63 )-6-amino-hexahydro-2,7-dioxopyrazolo[l,2- ]pyrazole-l-carboxylic acid 280 is shown in Scheme 36. Crude vinyl phosphonate 275, obtained by treatment of diethyl allyloxycarbonylmethyl-phosphonate with acetic anhydride and tetramethyl diaminomethane as a formaldehyde equivalent, was used in the Michael addition to chiral 4-(f-butoxycarbonylamino)pyrazolidin-3-one 272. The Michael addition is run in dichloro-methane followed by addition of f-butyl oxalyl chloride and 2 equiv of Huning s base in the same pot to provide 276 in 58% yield. The allyl ester is deprotected using palladium catalysis to give the corresponding acid 277, which is... [Pg.407]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

Allyl sulphones can be converted to dienes by alkylation and elimination of sulphinic acid under basic conditions (equation 64)105. Several vitamin A related polyenes have been synthesized following this two-step protocol (Table 10)106. The poor leaving-group ability of the arylsulphonyl group requires treatment with strong base for elimination. However, elimination of the allylsulphonyl group takes place readily under palladium catalysis (equation 65)107. Vinyl sulphones can be converted to dienes via Michael addition, alkylation with allyl halides and elimination of sulphinic acid sequence (equation 66)108. [Pg.394]

However, Michael addition has been successfully performed in recent years with the use of nucleophilics catalysis (fluoride anion or amines) (132) (Scheme 3.195). [Pg.615]

The utilization of copper complexes (47) based on bisisoxazolines allows various silyl enol ethers to be added to aldehydes and ketones which possess an adjacent heteroatom e.g. pyruvate esters. An example is shown is Scheme 43[126]. C2-Symmetric Cu(II) complexes have also been used as chiral Lewis acids for the catalysis of enantioselective Michael additions of silylketene acetals to alkylidene malonates[127]. [Pg.32]

During the coverage period of this chapter, reviews have appeared on the following topics reactions of electrophiles with polyfluorinated alkenes, the mechanisms of intramolecular hydroacylation and hydrosilylation, Prins reaction (reviewed and redefined), synthesis of esters of /3-amino acids by Michael addition of amines and metal amides to esters of a,/3-unsaturated carboxylic acids," the 1,4-addition of benzotriazole-stabilized carbanions to Michael acceptors, control of asymmetry in Michael additions via the use of nucleophiles bearing chiral centres, a-unsaturated systems with the chirality at the y-position, and the presence of chiral ligands or other chiral mediators, syntheses of carbo- and hetero-cyclic compounds via Michael addition of enolates and activated phenols, respectively, to o ,jS-unsaturated nitriles, and transition metal catalysis of the Michael addition of 1,3-dicarbonyl compounds. ... [Pg.419]

In conjunction with the Knoevenegal reaction, a Michael addition (Figure 22) reaction was also described by Jaekson et al. using the same siliea supported tertiary amines for the catalysis of conjugate addition of nitroalkenes to a,y9-unsaturated carbonyl compounds. At a flow rate of 6.6 pL/min the eonversion rate was constant with a high yield for 7 hours reaction time. [Pg.413]

To date, hydrogen bond catalysis has been successfully utilized to facilitate enantioselective Michael additions, Baylis-Hillman reactions, Diels-Alder cycloadditions, and additions of 7i-nucleophiles to imines. [Pg.332]

The majority of the Michael-type conjugate additions are promoted by amine-based catalysts and proceed via an enamine or iminium intermediate species. Subsequently, Jprgensen et al. [43] explored the aza-Michael addition of hydra-zones to cyclic enones catalyzed by Cinchona alkaloids. Although the reaction proceeds under pyrrolidine catalysis via iminium activation of the enone, and also with NEtj via hydrazone activation, both methods do not confer enantioselectivity to the reaction. Under a Cinchona alkaloid screen, quinine 3 was identified as an effective aza-Michael catalyst to give 92% yield and 1 3.5 er (Scheme 4). [Pg.151]

Barbas, one of the pioneers of enamine catalysis, has incorporated iminium ion intermediates in complex heterodomino reactions. One particularly revealing example that uses the complementary activity of both iminium ion and enamine intermediates is shown in Fig. 12 [188]. Within this intricate catalytic cycle the catalyst, L-proline (58), is actively involved in accelerating two iminium ion catalysed transformations a Knoevenagel condensation and a retro-Michael/Michael addition sequence, resulting in epimerisation. [Pg.323]

Keywords Absolute configuration, Amines, Amino acids, Carbenes, Cascade reactions, 2-chloro-2-cyclopropylideneacetates. Combinatorial libraries. Cycloadditions, Cyclobutenes, Cyclopropanes, Diels-Alder reactions. Heterocycles, Michael additions. Nitrones, Nucleophilic substitutions, Peptidomimetics, Palladium catalysis. Polycycles, Solid phase synthesis, Spiro compounds. Thiols... [Pg.149]


See other pages where Michael addition catalysis is mentioned: [Pg.4507]    [Pg.4506]    [Pg.4507]    [Pg.4506]    [Pg.49]    [Pg.164]    [Pg.7]    [Pg.169]    [Pg.70]    [Pg.148]    [Pg.99]    [Pg.169]    [Pg.319]    [Pg.147]    [Pg.569]    [Pg.114]    [Pg.207]    [Pg.402]    [Pg.144]    [Pg.70]    [Pg.88]    [Pg.324]    [Pg.327]    [Pg.329]    [Pg.384]    [Pg.173]    [Pg.177]    [Pg.70]   
See also in sourсe #XX -- [ Pg.613 ]

See also in sourсe #XX -- [ Pg.386 ]




SEARCH



Additives catalysis

Amine catalysis Michael addition

Carbene catalysis Michael additions

Enamine catalysis Michael addition, aldehyde acceptors

Lewis acid catalysis Michael addition

Michael addition Brpnsted base catalysis

Michael addition Organic catalysis

Michael addition enamine catalysis

Michael addition enantioselective catalysis

Michael addition iminium catalysis

Michael addition metal-catalysis

Michael addition proline-catalysis

Michael addition transition metal catalysis

Thiourea catalysis Michael addition

Zinc catalysis Michael addition

© 2024 chempedia.info