Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary micelles

The secondary solubilization of electrolytes, namely, their solubilization into water solubilized in the micelle, has been widely investigated [125-127]. [Pg.484]

As a result of the micellar environment, enzymes and proteins acquire novel conformational and/or dynamic properties, which has led to an interesting research perspective from both the biophysical and the biotechnological points of view [173-175], From the comparison of some properties of catalase and horseradish peroxidase solubilized in wa-ter/AOT/n-heptane microemulsions with those in an aqueous solution of AOT it was ascertained that the secondary structure of catalase significantly changes in the presence of an aqueous micellar solution of AOT, whereas in AOT/n-heptane reverse micelles it does not change. On the other hand, AOT has no effect on horseradish peroxidase in aqueous solution, whereas slight changes in the secondary structure of horseradish peroxidase in AOT/n-heptane reverse micelles occur [176],... [Pg.489]

The popularity of reversed-phase liquid chromatography (RPC) is easily explained by its unmatched simplicity, versatility and scope [15,22,50,52,71,149,288-290]. Neutral and ionic solutes can be separated simultaneously and the rapid equilibration of the stationary phase with changes in mobile phase composition allows gradient elution techniques to be used routinely. Secondary chemical equilibria, such as ion suppression, ion-pair formation, metal complexatlon, and micelle formation are easily exploited in RPC to optimize separation selectivity and to augment changes availaple from varying the mobile phase solvent composition. Retention in RPC, at least in the accepted ideal sense, occurs by non-specific hydrophobic interactions of the solute with the... [Pg.202]

Fig. 5.5 The oligopeptide synthesis at cationic micelles using the condensation agent CDI leads to the intermediate (I), which is in equilibrium with an IV-carboxyanhydride (II). A free primary or secondary amino acid reacts with (II) and forms an amide linkage as well as a carbamide terminus. ... Fig. 5.5 The oligopeptide synthesis at cationic micelles using the condensation agent CDI leads to the intermediate (I), which is in equilibrium with an IV-carboxyanhydride (II). A free primary or secondary amino acid reacts with (II) and forms an amide linkage as well as a carbamide terminus. ...
Recently, mesoporous aluminosilicates with strong acidity and high hydrothermal stability have been synthesized via self-assembly of aluminosilicate nanoclusters with templating micelles. The materials were found to contain both micro- and mesopores, and the pore walls consist of primary and secondary building units, which might be responsible for the acidity and stability (181). These materials were tested in isobutane/n-butene alkylation at 298 K, showing a similar time-on-stream behavior to that of zeolite BEA. No details of the product distribution were given. [Pg.288]

Their model, which became a standard, combined the important features of both concepts by proposing micelles of long, not short, molecules. The physical properties of cellulose were attributed to these forces, for example, tensile strength to the primary valence bonds and insolubility to the secondary forces. [Pg.37]

From these considerations there evolved the concept of "primary valence chains" in cellulose, held together in bundles, or micelles (crystallites) by secondary forces, as propounded by Meyer and Mark (5). This view was then extended to encompass other high polymers as well. It should be noted however, that Freudenberg had already proposed a chain structure for cellulose, based on degradation experiments (6). If the micelles were to... [Pg.46]

An interesting extension of aqueous solution radiolysis involved solutions of sodium dodecyl sulphate in the presence of MNP. Spin adducts of secondary alkyl radicals were detected provided that the critical micelle concentration of the surfactant was exceeded. Whilst it was rather loosely concluded that there is a marked catalytic effect of micelles on the rates of reaction of radicals with nitroso spin traps , no single origin of this effect could be clearly identified (Bakalik and Thomas, 1977). [Pg.40]

A polymer prepared in the presence of a secondary force often possesses a structure different from that obtained in solution. Template polymerization is a typical example. Micelles and polymer micelles are formed under conditions of thermodynamic equilibrium, so that the structure of these aggregates are always quite fluid. If the aggregate structure is immobilized by polymerization, they will provide better models of enzymes. [Pg.444]

Selective combination of the secondary geminate radical pairs occurs in the micelle, compared to nonselective free-radical combination reactions in solution. This results from the micelle host effectively constraining the separation of the geminate radical pair. [Pg.217]

A and B are in cis position relative to each other (see p. 54). One to three hydroxyl groups (in a position) are found in the steroid core at positions 3, 7, and 12. Bile acids keep bile cholesterol in a soluble state as micelles and promote the digestion of lipids in the intestine (see p.270). Cholic add and cheno-deoxychoMc acid are primary bile acids that are formed by the liver. Their dehydroxylation at C-7 by microorganisms from the intestinal flora gives rise to the secondary bile acids lithocholic acid and deoxycholic acid. [Pg.56]

Secondary chemical equilibria, 230,280 see also Secondary equilibria with diprotic acids and zwitterions, equilibrium constants and retention. 241 with micelle ftmtiation, 236... [Pg.171]

The following factors must be considered when assessing the stability of the casein micelle The role of Ca++ is very significant in milk. More than 90% of the calcium content of skim milk is associated in some way or another with the casein micelle. The removal of Ca++ leads to reversible dissociation of P-casein without micellular disintegration. The addition of Ca++ leads to aggregation. The same reaction occurs between the individual caseins in the micelle, but not as much because there is no secondary structure in casein proteins. [Pg.206]

Because ionic interactions other than hydrophobic ones are taking place, the contribution of electrostatic interactions can be estimated through studies outside the physiological pH ranges. The charge on the drug substance has an important role, along with the altered solubilization properties of the micelles (e.g., formation of secondary micelles at acidic pH see Sec. [Pg.135]

Description of the different mimetic systems will be the starting point of the presentation (Sect. 2). Preparation and characterization of monolayers (Langmuir films), Langmuir-Blodgett (LB) films, self-assembled (SA) mono-layers and multilayers, aqueous micelles, reversed micelles, microemulsions, surfactant vesicles, polymerized vesicles, polymeric vesicles, tubules, rods and related SA structures, bilayer lipid membranes (BLMs), cast multibilayers, polymers, polymeric membranes, and other systems will be delineated in sufficient detail to enable the neophyte to utilize these systems. Ample references will be provided to primary and secondary sources. [Pg.11]

Fig. 25. (A) DELFIA (Dissociation Enhanced Lanthanide Fluoro-ImmunoAssay) system. This heterogeneous immunoassay system uses a primary antibody bound to a solid support, to which a variable amount of unlabeled antigen is bound. The secondary antibody is labeled with a non-phospho-rescent lanthanide chelate, which becomes phosphorescent after dissociation from the antibody, due to the addition of an enhancement solution [which typically contains a mixture of sensitizer (typically a (1-diketonate) and micelle inducing surfactant (5). (B) Heterogeneous fluoroimmunoassay using a secondary antibody directly labeled with a phosphorescent lanthanide chelate. Fig. 25. (A) DELFIA (Dissociation Enhanced Lanthanide Fluoro-ImmunoAssay) system. This heterogeneous immunoassay system uses a primary antibody bound to a solid support, to which a variable amount of unlabeled antigen is bound. The secondary antibody is labeled with a non-phospho-rescent lanthanide chelate, which becomes phosphorescent after dissociation from the antibody, due to the addition of an enhancement solution [which typically contains a mixture of sensitizer (typically a (1-diketonate) and micelle inducing surfactant (5). (B) Heterogeneous fluoroimmunoassay using a secondary antibody directly labeled with a phosphorescent lanthanide chelate.

See other pages where Secondary micelles is mentioned: [Pg.395]    [Pg.326]    [Pg.395]    [Pg.326]    [Pg.108]    [Pg.50]    [Pg.235]    [Pg.3]    [Pg.720]    [Pg.828]    [Pg.399]    [Pg.42]    [Pg.302]    [Pg.300]    [Pg.340]    [Pg.648]    [Pg.22]    [Pg.81]    [Pg.101]    [Pg.102]    [Pg.416]    [Pg.27]    [Pg.1096]    [Pg.1097]    [Pg.1]    [Pg.126]    [Pg.657]    [Pg.23]    [Pg.205]    [Pg.207]    [Pg.123]    [Pg.126]    [Pg.358]    [Pg.12]    [Pg.82]    [Pg.256]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



© 2024 chempedia.info