Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl Lewis acid complex

Lewis Acid Complexes. Sulfolane complexes with Lewis acids, such as boron trifluoride or phosphoms pentafluoride (17). For example, at room temperature, sulfolane and boron trifluoride combine in a 1 1 mole ratio with the evolution of heat to give a white, hygroscopic soHd which melts at 37°C. The reaction of sulfolane with methyl fluoride and antimony pentafluoride inhquid sulfur dioxide gives crystalline tetrahydro-l-methoxythiophenium-l-oxidehexafluoroantimonate, the first example of an alkoxysulfoxonium salt (18). [Pg.69]

However, although we invoked a Lewis acid complex to provide the halonium electrophile, there is considerable evidence that, where appropriate, the electrophile in Friedel-Crafts alkylations is actually the dissociated carbocation itself. Of course, a simple methyl or ethyl cation is unlikely to be formed, so there we should assume a Lewis acid complex as the electrophilic species. On the other hand, if we can get a secondary or tertiary carbocation, then this is probably what happens. There are good stereochemical reasons why a secondary or tertiary complex cannot be attacked. Just as we saw with Sn2 reactions (see Section 6.1), if there is too much steric hindrance, then the reaction becomes SnI type. [Pg.306]

In 1997, the first truly catalytic enantioselective Mannich reactions of imines with silicon enolates using a novel zirconium catalyst was reported [9, 10]. To solve the above problems, various metal salts were first screened in achiral reactions of imines with silylated nucleophiles, and then, a chiral Lewis acid based on Zr(IV) was designed. On the other hand, as for the problem of the conformation of the imine-Lewis acid complex, utilization of a bidentate chelation was planned imines prepared from 2-aminophenol were used [(Eq. (1)]. This moiety was readily removed after reactions under oxidative conditions. Imines derived from heterocyclic aldehydes worked well in this reaction, and good to high yields and enantiomeric excesses were attained. As for aliphatic aldehydes, similarly high levels of enantiomeric excesses were also obtained by using the imines prepared from the aldehydes and 2-amino-3-methylphenol. The present Mannich reactions were applied to the synthesis of chiral (3-amino alcohols from a-alkoxy enolates and imines [11], and anti-cc-methyl-p-amino acid derivatives from propionate enolates and imines [12] via diastereo- and enantioselective processes [(Eq. (2)]. Moreover, this catalyst system can be utilized in Mannich reactions using hydrazone derivatives [13] [(Eq. (3)] as well as the aza-Diels-Alder reaction [14-16], Strecker reaction [17-19], allylation of imines [20], etc. [Pg.144]

The reaction rates for the cycloaddition of several of the mentioned dienophiles to electron-rich dienes are significantly increased upon addition of a catalytic amount of a Lewis acid. The A1C13 complex of methyl acrylate reacts 100,000 times faster with butadiene than pure methyl acrylate (Figure 15.21). Apparently, the C=C double bond in the Lewis acid complex of an acceptor-substituted dienophile is connected to a stronger acceptor substituent than in the Lewis-acid-free analog. A better acceptor increases the dienophilicity of a dienophile in a manner similar to the effect several acceptors have in the series of Table 15.1. [Pg.662]

Lewis acid complexes of -substituted a, 3-unsaturated ketones and aldehydes are unreactive toward alkenes. Crotonaldehyde and 3-penten-2-one cannot be induced to undergo ene reactions like acrolein and methyl vinyl ketone. The presence of a substituent on the -carbon stabilizes the enal- or enone-Lewis acid complex and stericdly retards the approach of an alkene to the -carbon. However, Snider et al. have found that a complex of these ketones and aldehydes with 2 equiv. of EtAlCk reacts reversibly with alkenes to give a zwitterion (22). This zwitterion, which is formed in the absence of a nucleophile, reacts reversibly to give a cyclobutane (23) or undergoes two 1,2-hydride or alkyl shifts to generate irreversibly a p, -disubstituted-a,P-unsaturated carbon compound (24). [Pg.7]

Butadienoate esters undergo AICI3 and EtAlCh catalyzed stereospecific [2 + 2] cycloadditions with a wide variety of alkenes to give alkyl cyclobutylideneacetates in good yield. The stereospecificity and ratios of ( )- and (Z)-isomers suggest a [ 2 + v2a] cycloaddition of the ester-Lewis acid complex to the alkene analogous to the cycloaddition of ketenes with alkenes. Similar results are obtained with methyl 2,3-pentadienoate, methyl 4-methyl-2,3-pentadienoate and methyl 2-methyl-2,3-butadi-... [Pg.10]

The reaction of aldehydes 3 with crotyl silanes (e.g. 5) yields 3-methylated homoallylic products such as 6 and 9. Since crotyl silanes are only weak nucleophiles, the carbonyl compound 3 must be activated. This can be done by addition of a Lewis acid (LA) to form the C2ixhony -Lewis acid complex 4. After addition of 5 and aqueous workup, the homoallylic alcohol 6 is obtained. An alkyl-oxo-carbenium ion 8 is available when treating an acetal 7 with acid or when the aldehyde 3 reacts with a silyl ether 10 in the presence of a Lewis or a Brousted acid (multicomponent crotylation). Crotylation of this alkyl-oxocarbenium ion 8 yields homoallylic ethers 9. [Pg.218]

This phenomenon was rationalized by arguing that the C=0 dipole moment is decreased upon Lewis acid complexation, thereby reducing dipole-induced dipole stabilization of the lowest energy (methyl) eclipsed conformer. [Pg.290]

In 1979, Koga and coworkers disclosed the first practical example of a catalytic enantioselective Diels-Alder reaction [44] promoted by a Lewis acidic complex, presumed to be menthoxyaluminum dichloride (1), derived from menthol and ethylaluminum di chloride, whose structure remains undefined [45]. This complex catalyzed the cycloaddition of cyclopentadiene with acrolein, methyl acrylate, and methacrolein with enantioselectivities as high as 72% ee. Oxidation of 2 (predominantly exo) followed by recrystallization actually lowered the ee ... [Pg.1120]

It has been observed that cycloadditions of methyl cinnamate with simple alkenes in dilute solution are catalyzed by Lewis acids such as boron trifluoride86. The mechanism of these reactions involves electronic excitation of a ground state methyl cinnamate-Lewis acid complex followed by reaction of the excited complex with ground state olefin. The catalytic effect of the Lewis acid results from an increase either in excited state lifetime or reactivity of the complexed versus free ester. This was discovered in an investigation of the photochemical reactivity of coumarin in the presence of Lewis acids87. [Pg.906]

Copolymerization in the presence of a Lewis acid may proceed either as the bipolymerization of the electron-donating monomer with the electron-accepting monomer-Lewis acid complex or as the homopolymerization of the ternary electron donor-electron acceptor-Lewis acid complex, i.e., in the styrene-methyl a-chloroacrylate-diethyl aluminium chloride system ... [Pg.298]


See other pages where Methyl Lewis acid complex is mentioned: [Pg.192]    [Pg.283]    [Pg.491]    [Pg.779]    [Pg.112]    [Pg.626]    [Pg.149]    [Pg.96]    [Pg.363]    [Pg.33]    [Pg.294]    [Pg.294]    [Pg.333]    [Pg.294]    [Pg.294]    [Pg.333]    [Pg.577]    [Pg.531]    [Pg.734]    [Pg.531]    [Pg.734]    [Pg.99]    [Pg.294]    [Pg.333]    [Pg.242]   
See also in sourсe #XX -- [ Pg.431 ]




SEARCH



Lewis acid complexation

Lewis acid complexes

Lewis complexed

Methyl complex

© 2024 chempedia.info