Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl blood

Grote s reagent is useful for the determination of 2-aminothiazoie in blood and wine (145), This thiazole may be extracted from its aqueous solution and then titrated in nonaqueous medium (MeOH) with HCIO4 in the presence of a mixed methyl red-methylene blue indicator (146). [Pg.30]

The importance of quinones with unsaturated side chains in respiratory, photosynthetic, blood-clotting, and oxidative phosphorylation processes has stimulated much research in synthetic methods. The important alkyl- or polyisoprenyltin reagents, eg, (71) or (72), illustrate significant conversions of 2,3-dimethoxy-5-methyl-l,4-ben2oquinone [605-94-7] (73) to 75% (74) [727-81-1] and 94% (75) [4370-61-0] (71—73). [Pg.412]

For more specific analysis, chromatographic methods have been developed. Using reverse-phase columns and uv detection, hplc methods have been appHed to the analysis of nicotinic acid and nicotinamide in biological fluids such as blood and urine and in foods such as coffee and meat. Derivatization techniques have also been employed to improve sensitivity (55). For example, the reaction of nicotinic amide with DCCI (AT-dicyclohexyl-0-methoxycoumarin-4-yl)methyl isourea to yield the fluorescent coumarin ester has been reported (56). After separation on a reversed-phase column, detection limits of 10 pmol for nicotinic acid have been reported (57). [Pg.51]

The primary transporter of cholesterol in the blood is low density Hpoprotein (LDL). Once transported intraceUularly, cholesterol homeostasis is controlled primarily by suppressing cholesterol synthesis through inhibition of P-hydroxy-P-methyl gluterate-coenzyme A (HMG—CoA) reductase, acyl CoA—acyl transferase (ACAT), and down-regulation of LDL receptors. An important dmg in the regulation of cholesterol metaboHsm is lovastatin, also known as mevinolin, MK-803, and Mevacor, which is an HMG—CoA reductase inhibitor (Table 5). [Pg.130]

Methyldopa, through its metaboHte, CX-methyInorepinephrine formed in the brain, acts on the postsynaptic tt2-adrenoceptor in the central nervous system. It reduces the adrenergic outflow to the cardiovascular system, thereby decreasing arterial blood pressure. If the conversion of methyldopa to CX-methyl norepinephrine in the brain is prevented by a dopamine -hydroxylase inhibitor capable of penetrating into the brain, it loses its antihypertensive effects. [Pg.142]

Hydroxycoumarin [1076-38-6] can be synthesized by cyclization of acetyl methyl salicylate. It is a coumatin metaboHte occurring in spoiled hay. Derivatives of 4-hydroxycoumarin such as dicoumarol [66-76-2] warfarin [81-81-2] cyclocoumarol [518-20-7] ethylbis—coumaracetate [548-00-5] and bis-4-hydroxycoumarin [25892-93-7] are synthetic blood anticoagulants (see Blood, coagulants and anticoagulants). [Pg.322]

The chromaffin cells of the adrenal medulla may be considered to be modified sympathetic neurons that are able to synthesize E from NE by /V-methylation. In this case the amine is Hberated into the circulation, where it exerts effects similar to those of NE in addition, E exhibits effects different from those of NE, such as relaxation of lung muscle (hence its use in asthma). Small amounts of E are also found in the central nervous system, particularly in the brain stem where it may be involved in blood pressure regulation. DA, the precursor of NE, has biological activity in peripheral tissues such as the kidney, and serves as a neurotransmitter in several important pathways in the brain (1,2). [Pg.354]

Hydroxymethyl-6-methyluracil (1043) was prepared many years ago from 6-methyl-uracil and formaldehyde, or in other ways. Since 1956 it has received much attention in the USSR under the (transliterated) name pentoxyl or pentoxil. It is used in several anaemic and disease conditions. For example, a mixture of folic acid and pentoxyl quickly reduces the anaemia resulting from lead poisoning pentoxyl stimulates the supply of serum protein after massive blood loss it stimulates wound healing it stimulates the immune response in typhus infection and it potentiates the action of sulfonamides in pneumococcus infections (70MI21300). [Pg.154]

I-Methyl-4-[3(5)-pyrazolyl]quinolinium iodides (688) also failed to depress blood sugar levels significantly (69JMC1124). Neuroleptic-like effects of some /3-aminoketones (689) containing a pyrazole nucleus have been described in the literature (B-80MI40406). The... [Pg.291]

In man, the metabolic pathways of mepirizole were distinct from those in experimental animals, since hydroxylation on each of the aromatic rings did not occur in man. Compound (752) was obtained by oxidation of the 3-methyl group to the carboxylic acid (a similar process occurs with 5-methylpyrazole-3-carboxylic acid, an active metabolite of 3,5-dimethylpyrazole). However, the carboxylic acid metabolite of mepirizole had no analgesic activity and did not decrease blood glucose. [Pg.302]

Quinolinium 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide dimensions, 2, 110 Quinolinium iodide, 1-alkyl-Ladenburg rearrangement, 2, 300 Quinolinium iodide, 1-methyl-Ladenburg rearrangement, 2, 300, 335 Quinolinium iodide, [l-methyl-4-[3(5)-pyrazolyl]-blood sugar level and, 5, 291 Quinolinium perchlorate, 1-ethoxy-hydroxymethylation, 2, 300 Quinolinium perchlorate, 1-methyl-nitration, 2, 318 Quinolinium salts alkylation, 2, 293 Beyer synthesis, 2, 474 electrophilic substitution, 2, 317 free radical alkylation, 2, 45 nitration, 2, 188 reactions... [Pg.832]

An important pathway for in vivo deactivation of prostaglandin A2 is the rapid conversion in mammalian blood via prostaglandin C2 to the more stable and biologically inactive prostaglandin 82-12-Methyl PGA2 and 8-methyl PGC2 were synthesized because they cannot be deactivated by this pathway. [Pg.291]

The complex thioamide lolrestat (8) is an inhibitor of aldose reductase. This enzyme catalyzes the reduction of glucose to sorbitol. The enzyme is not very active, but in diabetic individuals where blood glucose levels can. spike to quite high levels in tissues where insulin is not required for glucose uptake (nerve, kidney, retina and lens) sorbitol is formed by the action of aldose reductase and contributes to diabetic complications very prominent among which are eye problems (diabetic retinopathy). Tolrestat is intended for oral administration to prevent this. One of its syntheses proceeds by conversion of 6-methoxy-5-(trifluoroniethyl)naphthalene-l-carboxyl-ic acid (6) to its acid chloride followed by carboxamide formation (7) with methyl N-methyl sarcosinate. Reaction of amide 7 with phosphorous pentasulfide produces the methyl ester thioamide which, on treatment with KOH, hydrolyzes to tolrestat (8) 2[. [Pg.56]


See other pages where Methyl blood is mentioned: [Pg.212]    [Pg.614]    [Pg.151]    [Pg.212]    [Pg.614]    [Pg.151]    [Pg.95]    [Pg.183]    [Pg.329]    [Pg.23]    [Pg.962]    [Pg.550]    [Pg.223]    [Pg.342]    [Pg.432]    [Pg.408]    [Pg.409]    [Pg.113]    [Pg.493]    [Pg.516]    [Pg.100]    [Pg.111]    [Pg.68]    [Pg.50]    [Pg.207]    [Pg.316]    [Pg.645]    [Pg.690]    [Pg.23]    [Pg.962]    [Pg.86]    [Pg.586]    [Pg.1226]    [Pg.307]    [Pg.141]    [Pg.267]    [Pg.95]    [Pg.243]    [Pg.27]    [Pg.79]   
See also in sourсe #XX -- [ Pg.966 ]




SEARCH



© 2024 chempedia.info