Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl acetate sulphate

Ethyl n-butyrate. Use a mixture of 88 g. (92 ml.) of n-butyric acid, 23 g. (29 ml.) of ethanol and 9 g. (5 ml.) of concentrated sulphuric acid. Reflux for 14 hours. Pour into excess of water, wash several times with water, followed by saturated sodium bicarbonate solution until all the acid is removed, and finally with water. Dry with anhydrous magnesium sulphate, and distU. The ethyl n-but3rrate passes over at 119 5-120-5°, Yield 40 g. An improved yield can be obtained by distilhng the reaction mixture through an efficient fractionating column until the temperature rises to 125°, and purifying the crude ester as detailed above under methyl acetate. [Pg.383]

Ethyl acetate fraction from Argyreia speciosa (Burm.f) Boj. (Convolvulaceae) and its isolates, quercetin 3, 7 di-O-methyl-3-sulphate 15 (Fig. 2.3) and kaempferol... [Pg.44]

Place 80 g, of hydroxylamine sulphate (or 68-5 g. of the hydrochloride), 25 g. of hydrated sodium acetate, and 100 ml. of water in a 500 ml. flask fitted with a stirrer and a reflux water-condenser, and heat the stirred solution to 55-60°. Run in 35 g (42 nil,) of -hexyl methyl ketone, and continue the heating and vigorous stirring for ij hours. (The mixture can conveniently be set aside overnight after this stage.) Extract the oily oxime from the cold mixture twice with ether. Wash the united ethereal extract once with a small quantity of water, and dry it with sodium sulphate. Then distil off the ether from the filtered extract, preferably using a distillation flask of type shown in Fig. 41 (p. 65) and of ca, 50 ml, capacity, the extract being run in as fast as the ether distils, and then fractionally distil the oxime at water-pump pressure. Collect the liquid ketoxime, b.p. 110-111713 mm. Yield, 30-32 g. [Pg.225]

Successful results have been obtained (Renfrew and Chaney, 1946) with ethyl formate methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec.-butyl and iso-amyl acetat ethyleneglycol diacetate ethyl monochloro- and trichloro-acetates methyl, n-propyl, n-octyl and n-dodecyl propionates ethyl butyrate n-butyl and n-amyl valerates ethyl laurate ethyl lactate ethyl acetoacetate diethyl carbonate dimethyl and diethyl oxalates diethyl malonate diethyl adipate di-n-butyl tartrate ethyl phenylacetate methyl and ethyl benzoates methyl and ethyl salicylates diethyl and di-n-butyl phthalates. The method fails for vinyl acetate, ieri.-butyl acetate, n-octadecyl propionate, ethyl and >i-butyl stearate, phenyl, benzyl- and guaicol-acetate, methyl and ethyl cinnamate, diethyl sulphate and ethyl p-aminobenzoate. [Pg.393]

Steam distil from a 1 - 5 litre three-necked flask until the odour of nitrobenzene is no longer perceptible in the distillate (6-12 hours). Extract the cold residue with three 100 ml. portions of ether, dry the combined extracts with anhydrous magnesium sulphate, and distil oflF the ether. The residue solidifies and consists of almost pure methyl P-naphthyl ketone, m.p. 52° the yield is 30 g. Upon recrystallisation from glacial acetic acid, the m.p. is raised to 54°. [Pg.731]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]

Benzil monohydrazone. Method 1. Boil a mixture of 26 g. of hydrazine sulphate, 55 g. of crystallised sodium acetate and 125 ml. of water for 5 minutes, cool to about 50°, and add 115 ml. of methyl alcohol. Filter off the precipitated sodium sulphate and wash with a little alcohol. Dissolve 25 g. of benzil (Section IV,126) in 40 ml. of hot methyl alcohol and add the above hydrazine solution, heated to 60°. Most of the benzil hydrazone separates immediately, but reflux for 30 minutes in order to increase the yield. Allow to cool, filter the hydrazone and wash it with a httle ether to remove the yellow colour. The yield is 25 g., m.p. 149-151° (decomp.). [Pg.856]

Myristic acid from hexanoic acid and methyl hydrogen sebacate). Dissolve 23 -2 g. of redistilled hexanoic acid (re caproic acid), b.p. 204-6-205-5°/760 mm., and 21-6 g. of methyl hydrogen sebacate in 200 ml. of absolute methanol to which 0 13 g. of sodium has been added. Electrolyse at 2 0 amps., whilst maintaining the temperature between 30° and 40°, until the pH is about 8 0 (ca. 6 hours). Neutralise the contents of the electrolysis cell with a little acetic acid and distil off the methyl alcohol on a water bath. Dissolve the residue in 200 ml. of ether, wash with three 50 ml. portions of saturated sodium bicarbonate solution, once with water, dry with anhydrous magnesium sulphate, and distil with the aid of a fractionating column (see under Methyl hydrogen adipate). Collect the re-decane at 60°/10 mm. (3 0 g.), the methyl myristate at 158-160°/ 10 mm. (12 5g.) and dimethyl hexadecane-1 16-dicarboxylate at 215-230°/ 7 mm. (1 -5 g.)... [Pg.940]

The amount of reddish-purple acid-chloranilate ion liberated is proportional to the chloride ion concentration. Methyl cellosolve (2-methoxyethanol) is added to lower the solubility of mercury(II) chloranilate and to suppress the dissociation of the mercury(II) chloride nitric acid is added (concentration 0.05M) to give the maximum absorption. Measurements are made at 530nm in the visible or 305 nm in the ultraviolet region. Bromide, iodide, iodate, thiocyanate, fluoride, and phosphate interfere, but sulphate, acetate, oxalate, and citrate have little effect at the 25 mg L 1 level. The limit of detection is 0.2 mg L 1 of chloride ion the upper limit is about 120 mg L . Most cations, but not ammonium ion, interfere and must be removed. [Pg.700]


See other pages where Methyl acetate sulphate is mentioned: [Pg.383]    [Pg.383]    [Pg.383]    [Pg.483]    [Pg.1140]    [Pg.1140]    [Pg.383]    [Pg.383]    [Pg.115]    [Pg.322]    [Pg.327]    [Pg.327]    [Pg.732]    [Pg.735]    [Pg.941]    [Pg.83]    [Pg.213]    [Pg.229]    [Pg.233]    [Pg.425]    [Pg.430]    [Pg.464]    [Pg.562]    [Pg.729]    [Pg.735]    [Pg.218]    [Pg.732]    [Pg.735]    [Pg.879]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



Acetals methylation

Acetates methylated

Methyl acetals

Methyl acetate

Methyl sulphate—

© 2024 chempedia.info