Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methane zeolite adsorption

Mentasty, L. Woestyn, A.M., and Zgrablich, G High-pressure methane adsorption on natural and synthetic zeolites, Adsorpt. Sci. Technol., 11(2), 123-133 (1994). [Pg.1022]

Fig 3 shows the results of two temperature-programmed experiments. In the first (blank) experiment CH4 reacts with a "bare" FeZSM-5 zeolite, while in the second one it reacts with the zeolite after a-oxygen loading on its surface. Obviously, the bare surface is quite inert towards methane (Fig 3a) after reactor opening a weak CH4 adsorption occurs at room temperature. A slight heating results in a complete recovery of the CH4 pressure. [Pg.498]

The direct protonation of isobutane, via a pentacoordinated carbonium ion, is not likely under typical alkylation conditions. This reaction would give either a tertiary butyl cation (trimethylcarbenium ion) and hydrogen, or a secondary propyl cation (dimethylcarbenium ion) and methane (37-39). With zeolites, this reaction starts to be significant only at temperatures higher than 473 K. At lower temperatures, the reaction has to be initiated by an alkene (40). In general, all hydrocarbon transformations at low temperatures start with the adsorption of the much more reactive alkenes, and alkanes enter the reaction cycles exclusively through hydride transfer (see Section II.D). [Pg.260]

In Faujasites. Bezus et al. (49) reported in 1978 statistical calculations on the low-coverage adsorption thermodynamics of methane in NaX zeolite (Si/Al = 1.48). As for single-atom adsorbates described earlier, the agreement between their calculated values and a range of experimental values was excellent. Allowing for different orientations of the molecule, they calculated a value of 17.9 kJ/mol for the isosteric heat of adsorption at 323 K. Experimental values available for comparison at that time (134-136) ranged from 17.6 to 18.8 kJ/mol. Treating the methane molecule as a hard-sphere particle, with a radius of 2 A, resulted in a far lower heat of adsorption (12.6 kJ/mol). Further calculations (99) yielded heats of adsorption of 19.8 and 18.1 kJ/mol for methane in NaX and NaY zeolites, respectively. [Pg.62]

Yashonath etal. (46) used a Metropolis Monte Carlo method to simulate the infinite-dilution adsorption of methane in NaY zeolite. The lattice had a Si/Al ratio of 3.0 and was treated as rigid, whereas methane was modeled... [Pg.62]

Adsorption isotherms of methane in silicalite have also been predicted in a number of calculation studies (62, 155, 156). Goodbody et al. (62) predicted a heat of adsorption of 18 kJ/mol and simulated the adsorption isotherm up to 650 bar. From the adsorption isotherm, they found that the sinusoidal pore volume contains more methane molecules at all pressures. Snurr et al. (155) performed GC-MC and MD simulations over a wide range of occupancies at several temperatures. The intermolecular zeolite-methane potential parameters were taken from previous MD studies (11, 87) and the methane-methane parameters from MD simulations were adjusted to fit experimental results for liquid methane (157). Electrostatic contributions were neglected on account of the all-silica framework, and methane was represented by a rigid, five-center model. [Pg.69]

Preferential sorption in the sinusoidal channels was confirmed by Nicholas et al. (67) in an MD study of methane and propane adsorption. This preference was most noticeable at infinite dilution at a loading of 12 molecules per unit cell the distribution of molecules over the channels was found to be close to that expected from the relative volumes of the channel segments. The propane molecules were predicted to spend more time in the intersections than the straight channel at infinite dilution. This result is rationalized by considering the slow motion of the molecules and the conformational changes necessary to move from one channel type to another via an intersection. The distribution of propane backbone bond angles was predicted to be similar to that of gas-phase propane, indicating the rather minor effect of the zeolite on the internal coordinates of propane. [Pg.71]

The adsorption of gas molecules on the interior surfaces of zeolite voids is an ionic interaction with a characteristic potential energy called the heat of adsorption. The molecular adsorption process results in an exothermic attachment of the gas molecules to the surface of the voids, and is characterized by a high order of specificity. Zeolites exhibit a high affinity for certain gases or vapors. Because of their "effective" anionic frameworks and mobile cations, the physical bonds for adsorbed molecules having permanent electric moments (N2, NH-j, H20) are much enhanced compared with nonpolar molecules such as argon or methane. [Pg.4]

Methane/Nitrogen Gas Separation over the Zeolite Clinoptilolite by the Selective Adsorption of Nitrogen... [Pg.215]

The Sumitomo-BF PSA process uses carbon molecular sieves (CMS) as the selective adsorbent, CMS has a higher capacity of adsorption than zeolites for methane and oxygen, and it is considered to be advantageous for hydrogen purification. If dirty raw gases are fed to this process, minor amounts of heavy hydrocarbon components such as aromatics are likely to cause deterioration of the adsorbents. To remove the heavy hydrocarbons, prefilter columns that contain activated carbon are placed upstream of the main CMS adsorbent beds4. [Pg.132]

The adsorption was studied at higher temperatures. At 573 K, ethylene adsorbed on Ru-Na-Y zeolite is immediately converted to ethane and some methane. [Pg.340]

Kazansky VB, Serykh AI, Pidko EA (2004) DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions methane adsorption. Journal of Catalysis 225(2) 369-373... [Pg.589]

Among the chemical reactions of interest catalyzed by zeolites, those involving alkanes are specially important from the technological point of view. Thus, some alkane molecules were selected and a systematic study was conducted, on the various steps of the process (diffusion, adsorption and chemical reaction), in order to develop adequate methodologies to investigate such catalytic reactions. Linear alkanes, from methane to n-butane, as well as isobutane and neopentane, chosen as prototypes for branched alkanes, were considered in the diffusion and adsorption studies. Since the chemical step requires the use of the more time demanding quantum-mechanical techniques, only methane, ethane, propane and isobutane were considered. [Pg.41]


See other pages where Methane zeolite adsorption is mentioned: [Pg.404]    [Pg.1011]    [Pg.336]    [Pg.1541]    [Pg.661]    [Pg.75]    [Pg.170]    [Pg.285]    [Pg.50]    [Pg.140]    [Pg.155]    [Pg.422]    [Pg.325]    [Pg.21]    [Pg.21]    [Pg.30]    [Pg.54]    [Pg.55]    [Pg.60]    [Pg.64]    [Pg.70]    [Pg.101]    [Pg.102]    [Pg.130]    [Pg.62]    [Pg.8]    [Pg.215]    [Pg.352]    [Pg.354]    [Pg.365]    [Pg.96]    [Pg.421]    [Pg.233]    [Pg.314]    [Pg.47]   


SEARCH



Zeolite adsorption, simulations methane

© 2024 chempedia.info