Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals optimum

The environmental scientist has at his disposal a variety of sensitive, multi-elemental analytical methods that can lead to a massive amount of data on airborne metals. Optimum use of these tools for environmental monitoring calls for focusing resources only on those metals that are environmentally important. Considerations of toxicity along with their ability to interact in the air, leading to the formation of secondary pollutants, and their presence in air have led to the identification of 17 environmentally important metals nickel, beryllium, cadmium, tin, antimony, lead, vanadium, mercury, selenium, arsenic, copper, iron, magnesium, manganese, titanium, chromium, and zinc. In addition to the airborne concentration, the particle size of environmentally important metals is perhaps the major consideration in assessing their importance. [Pg.167]

Direct Titrations. The most convenient and simplest manner is the measured addition of a standard chelon solution to the sample solution (brought to the proper conditions of pH, buffer, etc.) until the metal ion is stoichiometrically chelated. Auxiliary complexing agents such as citrate, tartrate, or triethanolamine are added, if necessary, to prevent the precipitation of metal hydroxides or basic salts at the optimum pH for titration. Eor example, tartrate is added in the direct titration of lead. If a pH range of 9 to 10 is suitable, a buffer of ammonia and ammonium chloride is often added in relatively concentrated form, both to adjust the pH and to supply ammonia as an auxiliary complexing agent for those metal ions which form ammine complexes. A few metals, notably iron(III), bismuth, and thorium, are titrated in acid solution. [Pg.1167]

Fig. 42. Diagram of a mask used for 1 1 proximity x-ray Hthography. These thin-membrane masks, required for optimum transmission when using patterned metal absorbers, must remain free of distortion to maintain pattern fideHty during exposure. Fig. 42. Diagram of a mask used for 1 1 proximity x-ray Hthography. These thin-membrane masks, required for optimum transmission when using patterned metal absorbers, must remain free of distortion to maintain pattern fideHty during exposure.
Hydrocarbon, typically natural gas, is fed into the reactor to intersect with an electric arc stmck between a graphite cathode and a metal (copper) anode. The arc temperatures are in the vicinity of 20,000 K inducing a net reaction temperature of about 1500°C. Residence time is a few milliseconds before the reaction temperature is drastically reduced by quenching with water. Just under 11 kWh of energy is required per kg of acetylene produced. Low reactor pressure favors acetylene yield and the geometry of the anode tube affects the stabiUty of the arc. The maximum theoretical concentration of acetylene in the cracked gas is 25% (75% hydrogen). The optimum obtained under laboratory conditions was 18.5 vol % with an energy expenditure of 13.5 kWh/kg (4). [Pg.384]

Alcohol autoxidation is carried out in the range of 70—160°C and 1000—2000 kPa (10—20 atm). These conditions maintain the product and reactants as Hquids and are near optimum for practical hydrogen peroxide production rates. Several additives including acids, nitriles, stabHizers, and sequestered transition-metal oxides reportedly improve process economics. The product mixture, containing hydrogen peroxide, water, acetone, and residual isopropyl alcohol, is separated in a wiped film evaporator. The organics and water are taken overhead and further refined to recover by-product acetone and the... [Pg.476]

The proposed mechanism by which chlorinated dioxins and furans form has shifted from one of incomplete destmction of the waste to one of low temperature, downstream formation on fly ash particles (33). Two mechanisms are proposed, a de novo synthesis, in which PCDD and PCDF are formed from organic carbon sources and Cl in the presence of metal catalysts, and a more direct synthesis from chlorinated organic precursors, again involving heterogeneous catalysis. Bench-scale tests suggest that the optimum temperature for PCDD and PCDF formation in the presence of fly ash is roughly 300°C. [Pg.53]

This reaction is one example of several possible radical transition-metal ion interactions. The significance of this and similar reactions is that radicals are destroyed and are no longer available for initiation of useful radical reactions. Consequentiy, the optimum use levels of transition metals are very low. Although the hydroperoxide decomposes quickly when excess transition metal is employed, the efficiency of radical generation is poor. [Pg.228]

Many cellular plastic products are available with different types of protective faces, including composite metal and plastic foils, fiber-reinforced plastic skins, and other coatings. These reduce but do not eliminate the rate of aging. For optimum performance, such membranes must be totally adhered to the foam, and other imperfections such as wrinkles, cuts, holes, and unprotected edges should be avoided because they all contribute to accelerated aging. [Pg.334]

Ceramic—metal interfaces are generally formed at high temperatures. Diffusion and chemical reaction kinetics are faster at elevated temperatures. Knowledge of the chemical reaction products and, if possible, their properties are needed. It is therefore imperative to understand the thermodynamics and kinetics of reactions such that processing can be controlled and optimum properties obtained. [Pg.199]

For insulators, Z is very small because p is very high, ie, there is Htde electrical conduction for metals, Z is very small because S is very low. Z peaks for semiconductors at - 10 cm charge carrier concentration, which is about three orders of magnitude less than for free electrons in metals. Thus for electrical power production or heat pump operation the optimum materials are heavily doped semiconductors. [Pg.507]

Many organic hahdes, especially alkyl bromides and iodides, react direcdy with tin metal at elevated temperatures (>150° C). Methyl chloride reacts with molten tin metal, giving good yields of dimethyl tin dichloride, which is an important intermediate in the manufacture of dimethyl tin-ha sed PVC stabilizers. The presence of catalytic metallic impurities, eg, copper and zinc, is necessary to achieve optimum yields (108) ... [Pg.72]

Precipitation is affected by pH, solubiUty product of the precipitant, ionic strength and temperature of the aqueous stream, and the presence of metal complexes. For each metal precipitant, there is an optimum pH where its solubiUty is lowest and hence, the highest removals may be achieved. When an aqueous stream contains various metals, the precipitation process caimot be optimized for each metal, sometimes making it difficult to achieve effluent targets for each. SolubiUty products depend on the form of the metal compound and ate lowest for metal sulfides, reflecting the relative insolubiUty of these compounds. For example, the solubiUty product for lead sulfide [1314-87-0] is on the order of compared to 10 for lead carbonate. Metal... [Pg.164]


See other pages where Metals optimum is mentioned: [Pg.189]    [Pg.189]    [Pg.189]    [Pg.572]    [Pg.189]    [Pg.189]    [Pg.189]    [Pg.189]    [Pg.572]    [Pg.189]    [Pg.729]    [Pg.1781]    [Pg.212]    [Pg.441]    [Pg.68]    [Pg.206]    [Pg.312]    [Pg.550]    [Pg.94]    [Pg.114]    [Pg.114]    [Pg.266]    [Pg.428]    [Pg.214]    [Pg.334]    [Pg.499]    [Pg.120]    [Pg.146]    [Pg.149]    [Pg.180]    [Pg.197]    [Pg.466]    [Pg.42]    [Pg.42]    [Pg.54]    [Pg.447]    [Pg.513]    [Pg.337]    [Pg.492]    [Pg.23]    [Pg.58]    [Pg.319]    [Pg.409]    [Pg.438]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Composition, optimum metals

© 2024 chempedia.info