Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals in Molecules

Of course, were the metal ions that exist in the oxidized surface to undergo attack in a different way, through complexation by natural ligands and subsequent dissolution, fresh metal surface would be exposed and available for attack. Such a process, occurring over [Pg.9]

Thus in the laboratory we tend to meet almost all metals in a pure form as synthetic cationic salts of common anions. These tend to be halides or sulfates, and it is these metal salts, hydrated or anhydrous, that form the entry point to almost all of metal coordination chemistry. In nature, it is no accident that metal ions that are relatively common tend to find roles, mediated of course by their chemical and electrochemical properties. Thus iron is heavily used not only because it is common, but also because it forms strong complexes with available biomolecules and has an Fe(II)/(III) redox couple that is accessible by biological oxidants and reductants and thus useful to drive some biochemical processes. [Pg.10]


For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

On metals in particular, the dependence of the radiation absorption by surface species on the orientation of the electrical vector can be fiilly exploited by using one of the several polarization techniques developed over the past few decades [27, 28, 29 and 30], The idea behind all those approaches is to acquire the p-to-s polarized light intensity ratio during each single IR interferometer scan since the adsorbate only absorbs the p-polarized component, that spectral ratio provides absorbance infonnation for the surface species exclusively. Polarization-modulation mediods provide the added advantage of being able to discriminate between the signals due to adsorbates and those from gas or liquid molecules. Thanks to this, RAIRS data on species chemisorbed on metals have been successfidly acquired in situ under catalytic conditions [31], and even in electrochemical cells [32]. [Pg.1782]

The full quantum mechanical study of nuclear dynamics in molecules has received considerable attention in recent years. An important example of such developments is the work carried out on the prototypical systems H3 [1-5] and its isotopic variant HD2 [5-8], Li3 [9-12], Na3 [13,14], and HO2 [15-18], In particular, for the alkali metal trimers, the possibility of a conical intersection between the two lowest doublet potential energy surfaces introduces a complication that makes their theoretical study fairly challenging. Thus, alkali metal trimers have recently emerged as ideal systems to study molecular vibronic dynamics, especially the so-called geometric phase (GP) effect [13,19,20] (often referred to as the molecular Aharonov-Bohm effect [19] or Berry s phase effect [21]) for further discussion on this topic see [22-25], and references cited therein. The same features also turn out to be present in the case of HO2, and their exact treatment assumes even further complexity [18],... [Pg.552]

As with the other sem i-cm pineal methods. HyperGhem s im p le-meiitation of ZINDO/1 is restricted to spin multiplicities up to a quartet state. ZIXDO/1 lets you calculate the energy slates in molecules containing transition metals. [Pg.294]

The neutral complexes of chromium, molybdenum, tungsten, and vanadium are six-coordinate and the CO molecules are arranged about the metal in an octahedral configuration as shown in stmcture (3). Vanadium carbonyl possesses an unpaired electron and would be expected to form a metal—metal bond. Steric hindrance may prevent dimerization. The other hexacarbonyls are diamagnetic. [Pg.63]

Lake Red C is an example of a pigment that has been made insoluble by a heavy metal. In this case the metal is barium one barium ion precipitates two molecules. Other metals used are calcium, strontium, manganese, and aluminum. This pigment is used in polystyrene. [Pg.461]

MIR), requires the introduction of new x-ray scatterers into the unit cell of the crystal. These additions should be heavy atoms (so that they make a significant contribution to the diffraction pattern) there should not be too many of them (so that their positions can be located) and they should not change the structure of the molecule or of the crystal cell—in other words, the crystals should be isomorphous. In practice, isomorphous replacement is usually done by diffusing different heavy-metal complexes into the channels of preformed protein crystals. With luck the protein molecules expose side chains in these solvent channels, such as SH groups, that are able to bind heavy metals. It is also possible to replace endogenous light metals in metal-loproteins with heavier ones, e.g., zinc by mercury or calcium by samarium. [Pg.380]

Among the alkali metals, Li, Na, K, Rb, and Cs and their alloys have been used as exohedral dopants for Cgo [25, 26], with one electron typically transferred per alkali metal dopant. Although the metal atom diffusion rates appear to be considerably lower, some success has also been achieved with the intercalation of alkaline earth dopants, such as Ca, Sr, and Ba [27, 28, 29], where two electrons per metal atom M are transferred to the Cgo molecules for low concentrations of metal atoms, and less than two electrons per alkaline earth ion for high metal atom concentrations. Since the alkaline earth ions are smaller than the corresponding alkali metals in the same row of the periodic table, the crystal structures formed with alkaline earth doping are often different from those for the alkali metal dopants. Except for the alkali metal and alkaline earth intercalation compounds, few intercalation compounds have been investigated for their physical properties. [Pg.38]

It is usual to think that plastics are a relatively recent development but in fact, as part of the larger family called polymers, they are a basic ingredient of animal and plant life. Polymers are different from metals in the sense that their structure consists of very long chain-like molecules. Natural materials such as silk, shellac, bitumen, rubber and cellulose have this type of structure. However, it was not until the 19th century that attempts were made to develop a synthetic... [Pg.1]

Interaction of the inhibitor with water molecules Due to the electrostatic and co-ordinate bond interactions described under the previous two headings, the surfaces of metals in aqueous solutions are covered with adsorbed water molecules. Adsorption of inhibitor molecules is a displacement... [Pg.808]

The hydrogen evolution reaction (h.e.r.) is of particular importance in corrosion for a number of reasons. Firstly, the reduction of the HjO ion in acid solutions or the H2O molecule in neutral and alkaline solution is a common cathodic reaction for the corrosion of metals in acid, neutral and alkaline solutions the fact that iron will corrode in neutral water free from dissolved... [Pg.1203]

Ligand A molecule or anion bonded to the central metal in a complex ion, 409 characterization, 411-412 nomenclature, 648-649 Light, 159q absorption, 421 particle nature of, 135-136 wave nature of, 133-135 Limiting reactant The least abundant... [Pg.691]

When we study a solid that does not have the characteristic lustrous appearance of a metal, we find that the conductivity is extremely low. This includes the solids we have called ionic solids sodium chloride, sodium nitrate, silver nitrate, and silver chloride. It includes, as well, the molecular crystals, such as ice. This solid, shown in Figure 5-3, is made up of molecules (such as exist in the gas phase) regularly packed in an orderly array. These poor conductors differ widely from the metals in almost every property. Thus electrical conductivity furnishes the key to one of the most fundamental classification schemes for substances. [Pg.81]

Even though silicon is metallic in appearance, it is not generally classified as a metal. The electrical conductivity of silicon is so much less than that of ordinary metals it is called a semiconductor. Silicon is an example of a network solid (see Figure 20-1)—it has the same atomic arrangement that occurs in diamond. Each silicon atom is surrounded by, and covalently bonded to, four other silicon atoms. Thus, the silicon crystal can be regarded as one giant molecule. [Pg.365]

Another significant comparison between the two systems concerns the partial pressures of the metal dioxide molecules. These pressures are relatively insensitive to the condensed-phase composition and are quite similar in the plutonia and urania systems. Calculated metal dioxide vapor pressures are compared in Table V for 0/M = 1.96. [Pg.142]

On the other hand, surface physicists often measure 0 which represents the work function of metals as modified by adsorption of polar (water) molecules.35-39 What they are measuring (although they may not realize it) is precisely the potential of zero charge of the given metal in the UHV scale. The value of 0 is exactly known in that case, but the relevance of the value of A0 is in doubt.32,33 In fact, only a few layers of a solvent... [Pg.11]


See other pages where Metals in Molecules is mentioned: [Pg.75]    [Pg.354]    [Pg.60]    [Pg.66]    [Pg.9]    [Pg.9]    [Pg.11]    [Pg.75]    [Pg.354]    [Pg.60]    [Pg.66]    [Pg.9]    [Pg.9]    [Pg.11]    [Pg.50]    [Pg.712]    [Pg.1949]    [Pg.441]    [Pg.173]    [Pg.257]    [Pg.397]    [Pg.285]    [Pg.180]    [Pg.1060]    [Pg.1096]    [Pg.1166]    [Pg.122]    [Pg.604]    [Pg.343]    [Pg.309]    [Pg.299]    [Pg.311]    [Pg.378]    [Pg.59]    [Pg.108]    [Pg.628]    [Pg.343]    [Pg.169]    [Pg.115]   


SEARCH



Bond distances in alkali metal halide molecules

Metal Ions in Proteins and Biological Molecules

Spontaneous Resolution of Chiral Molecules at a Metal Surface in 2D Space

© 2024 chempedia.info