Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal surface characterization

The external reflection of infrared radiation can be used to characterize the thickness and orientation of adsorbates on metal surfaces. Buontempo and Rice [153-155] have recently extended this technique to molecules at dielectric surfaces, including Langmuir monolayers at the air-water interface. Analysis of the dichroic ratio, the ratio of reflectivity parallel to the plane of incidence (p-polarization) to that perpendicular to it (.r-polarization) allows evaluation of the molecular orientation in terms of a tilt angle and rotation around the backbone [153]. An example of the p-polarized reflection spectrum for stearyl alcohol is shown in Fig. IV-13. Unfortunately, quantitative analysis of the experimental measurements of the antisymmetric CH2 stretch for heneicosanol [153,155] stearly alcohol [154] and tetracosanoic [156] monolayers is made difflcult by the scatter in the IR peak heights. [Pg.127]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

Metal surfaces in motion have also been characterized by STM, one of the clearest examples bemg tire surface diflfiision of gold atoms on Au(l 11) [29] (figure Bl.19.7). Surface diflfiision of adsorbates on metals can be followed [30] provided that appropriate cooling systems are available, and STM has been successfiilly employed to follow the 2D dendritic growtli of metals on metal surfaces [31]. [Pg.1682]

Ultra-high vacuum (UHV) surface science methods allow preparation and characterization of perfectly clean, well ordered surfaces of single crystalline materials. By preparing pairs of such surfaces it is possible to fonn interfaces under highly controlled conditions. Furthennore, thin films of adsorbed species can be produced and characterized using a wide variety of methods. Surface science methods have been coupled with UHV measurements of macroscopic friction forces. Such measurements have demonstrated that adsorbate film thicknesses of a few monolayers are sufficient to lubricate metal surfaces [12, 181. [Pg.2747]

MOLE, however, is more sensitive than ETIR (<1 samples compared to about 100 p.m ). With surface-enhanced Raman spectroscopy the Raman signal is enhanced by several orders of magnitude. This requires that the sample be absorbed on a metal surface (eg, Ag, Cu, or Au). It also yields sophisticated characterization data for the polytypes of siUcon carbide, graphite, etc. [Pg.335]

The predorninant method for the analysis of alurninum-base alloys is spark source emission spectroscopy. SoHd metal samples are sparked direcdy, simultaneously eroding the metal surface, vaporizing the metal, and exciting the atomic vapor to emit light ia proportion to the amount of material present. Standard spark emission analytical techniques are described in ASTM ElOl, E607, E1251 and E716 (36). A wide variety of weU-characterized soHd reference materials are available from major aluminum producers for instmment caUbration. [Pg.105]

What does the corrosion look like Metal surfaces corroded by naphthenic acids are characterized by sharp-edged, streamlined grooves or ripples resembling erosion effects, in which all corrosion products have been swept away, leaving very clean, rough surfaces. [Pg.264]

Corrosion products formed as thin layers on metal surfaces in either aqueous or gaseous environments, and the nature and stability of passive and protective films on metals and alloys, have also been major areas of XPS application. XPS has been used in two ways, one in which materials corroded or passivated in the natural environment are analyzed, and another in which well-characterized, usually pure metal surfaces are studied after exposure to controlled conditions. [Pg.25]

Conventionally RAIRS has been used for both qualitative and quantitative characterization of adsorbed molecules or films on mirror-like (metallic) substrates [4.265]. In the last decade the applicability of RAIRS to the quantitative analysis of adsorbates on non-metallic surfaces (e.g. semiconductors, glasses [4.267], and water [4.273]) has also been proven. The classical three-phase model for a thin isotropic adsorbate layer on a metallic surface was developed by Greenler [4.265, 4.272]. Calculations for the model have been extended to include description of anisotropic layers on dielectric substrates [4.274-4.276]. [Pg.250]

Let us mention some examples, that is, the passivation potential at which a metal surface suddenly changes from an active to a passive state, and the activation potential at which a metal surface that is passivated resumes active dissolution. In these cases, a drastic change in the corrosion rate is observed before and after the characteristic value of electrode potential. We can see such phenomena in thermodynamic phase transitions, e.g., from solid to liquid, from ferromagnetism to paramagnetism, and vice versa.3 All these phenomena are characterized by certain values... [Pg.218]

Alkalis are the most important electropositive promoters of metal and metal oxide catalysts. They are used in many important industrial catalysts but are also quite suitable for fundamental studies since they can be easily introduced under vacuum conditions on well-characterized model metal surfaces. [Pg.24]

On photolyzing CoziCOg in the matrix (20), a number of photoproducts could be observed. The results of these experiments are summarized in Scheme 4, which illustrates the various species formed. Of particular interest is the formation of Co2(CO)7 on irradiation of Co2(CO)g in CO (254 nm), as this species had not been characterized in the metal-atom study of Hanlan et al. (129). Passage of Co2(CO)g over an active, cobalt-metal surface before matrix isolation causes complete decomposition. On using a less active catalyst, the IR spectrum of Co(CO)4 could be observed. An absorption due to a second decomposition product, possibly Co2(CO)g, was also noted. [Pg.134]

Numerous works have been implemented on tellurium electrochemistry and its adsorption at metal surfaces. The morphological structures of electrodeposited Te layers at various stages of deposition (first UPD, second UPD, and bulk deposition) are now well known [88-93]. As discussed in the previous paragraphs, Stickney and co-workers have carried out detailed characterizations of the first Te monolayer on Au single-crystal surfaces in order to establish the method of electrochemical atomic layer epitaxy of CdTe. [Pg.176]

The STEM Is Ideally suited for the characterization of these materials, because one Is normally measuring high atomic number elements In low atomic number metal oxide matrices, thus facilitating favorable contrast effects for observation of dispersed metal crystallites due to diffraction and elastic scattering of electrons as a function of Z number. The ability to observe and measure areas 2 nm In size In real time makes analysis of many metal particles relatively rapid and convenient. As with all techniques, limitations are encountered. Information such as metal surface areas, oxidation states of elements, chemical reactivity, etc., are often desired. Consequently, additional Input from other characterization techniques should be sought to complement the STEM data. [Pg.375]


See other pages where Metal surface characterization is mentioned: [Pg.230]    [Pg.97]    [Pg.11]    [Pg.293]    [Pg.540]    [Pg.247]    [Pg.983]    [Pg.290]    [Pg.230]    [Pg.97]    [Pg.11]    [Pg.293]    [Pg.540]    [Pg.247]    [Pg.983]    [Pg.290]    [Pg.1328]    [Pg.1780]    [Pg.1780]    [Pg.1781]    [Pg.1784]    [Pg.2907]    [Pg.333]    [Pg.177]    [Pg.414]    [Pg.721]    [Pg.249]    [Pg.263]    [Pg.410]    [Pg.411]    [Pg.45]    [Pg.16]    [Pg.104]    [Pg.127]    [Pg.188]    [Pg.199]    [Pg.309]    [Pg.398]    [Pg.30]    [Pg.327]    [Pg.355]    [Pg.27]    [Pg.7]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Metal characterization

Metal characterized

Metallic characterization

© 2024 chempedia.info