Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal ions oxidative cleavage

COVALENT COMPOUNDS, METAL IONS OXIDATION-REDUCTION 6.4 ELECTRON ACCEPTANCE FOLLOWED BY CLEAVAGE The general equations describing this process are X-Y + M" " ii (X-Yj + M "-"" -... [Pg.458]

Concern for the conservation of energy and materials maintains high interest in catalytic and electrochemistry. Oxygen in the presence of metal catalysts is used in CUPROUS ION-CATALYZED OXIDATIVE CLEAVAGE OF AROMATIC o-DIAMINES BY OXYGEN (E,Z)-2,4-HEXADIENEDINITRILE and OXIDATION WITH BIS(SALI-CYLIDENE)ETHYLENEDIIMINOCOBALT(II) (SALCOMINE) 2,6-DI-important industrial method, is accomplished in a convenient lab-scale process in ALDEHYDES FROM OLEFINS CYCLOHEXANE-CARBOXALDEHYDE. An effective and useful electrochemical synthesis is illustrated in the procedure 3,3,6,6-TETRAMETHOXY-1,4-CYCLOHEX ADIENE. ... [Pg.129]

For a review of metal ion-catalyzed oxidative cleavage of alcohols, see Trahanovsky, W.S. Methods Free-Radical Chem. 1973, 4, 133. For a review of the oxidation of aldehydes and ketones, see Verter, H.S. in Zabicky The Chemistry of the Carbonyl Group, pt. 2 Wiley NY, 1970, p. 71. [Pg.1577]

Although, as stated above, we wiU mostly focus on hydrolytic systems it is worth discussing oxidation catalysts briefly [8]. Probably the best known of these systems is exemphfied by the antitumor antibiotics belonging to the family of bleomycins (Fig. 6.1) [9]. These molecules may be included in the hst of peptide-based catalysts because of the presence of a small peptide which is involved both in the coordination to the metal ion (essential co-factor for the catalyst) and as a tether for a bisthiazole moiety that ensures interaction with DNA. It has recently been reported that bleomycins will also cleave RNA [10]. With these antibiotics DNA cleavage is known to be selective, preferentially occurring at 5 -GpC-3 and 5 -GpT-3 sequences, and results from metal-dependent oxidation [11]. Thus it is not a cleavage that occurs at the level of a P-O bond as expected for a non-hydrolytic mechanism. [Pg.225]

RNA is as suitable (if not more so) than DNA as a cleavage target [37]. In contrast to DNA, RNA is substantially less prone to oxidative cleavage [38] as a consequence of the higher stability of the glycosidic bond in ribonucleotides compared to that in deoxyribonucleotides. On the basis of the properties described in the introductory sections RNA is by contrast, much less stable to hydrolytic cleavage. For this reason the hydrolysis of the phosphate bond in this system can be successfully catalyzed not only by metal ions but also by ammonium ions. [Pg.231]

Tl(III) < Pb(IV), and this conclusion has been confirmed recently with reference to the oxythallation of olefins 124) and the cleavage of cyclopropanes 127). It is also predictable that oxidations of unsaturated systems by Tl(III) will exhibit characteristics commonly associated with analogous oxidations by Hg(II) and Pb(IV). There is, however, one important difference between Pb(IV) and Tl(III) redox reactions, namely that in the latter case reduction of the metal ion is believed to proceed only by a direct two-electron transfer mechanism (70). Thallium(II) has been detected by y-irradiation 10), pulse radiolysis 17, 107), and flash photolysis 144a) studies, butis completely unstable with respect to Tl(III) and T1(I) the rate constant for the process 2T1(II) Tl(III) + T1(I), 2.3 x 10 liter mole sec , is in fact close to diffusion control of the reaction 17). [Pg.174]

It was found in the case of O-benzyl systems that palladium oxide is much more effective than palladium metal. No such effect was observed with the N-benzyl system.8 It is possible that the N-compounds can poison the electrophile metal ions, and the hydrogenolysis of the N-benzyl bond can take place only by the hydrogenolytic cleavage instead of the insertion mechanism. This is supported by the experimental finding that the product amine can inhibit the catalyst, and this can be minimized by buffering at a pH less than 4. [Pg.161]

FIGURE 6.21 (A) Removal of trityl and acetamidomethyl from sulfhydryl by oxidative cleavage by iodine. (B) Cleavage of terf-butylsulfanyl by mercury(II) acetate,88 followed by displacement of the metal ion by hydrogen sulfide. [Pg.183]

The mechanism of action, and organization of the catalytic sites, in hydrogenases are different from a solid catalyst such as platinum. For a start, the reaction of H2 with hydrogenase involves heterolytic cleavage into a hydron and a hydride. This contrasts with the reaction of H2 at the surface of a metal such as platinum, which is usually considered to involve the homolytic cleavage into two hydrogen atoms. Moreover in the enzyme, the catalyst is a cluster of metal ions (with oxidation states +2 or -h3) rather than the metal (oxidation state 0). [Pg.189]

Such a species cannot be ruled out in reactions of iron-EDTA complexes with hydroperoxides recently described by Bruice and coworkers (27). On the other hand, a hydroperoxide complex that reacts with the substrate such that bond formation fiom O to substrate is concerted with 0-0 bond breaking, as proposed by Klinman for dopamine P-monooxygenase (18), could provide compensation for the cost of 0-0 bond cleavage in the transition state. In fact, it is interesting to speculate that for each of these enzymes, the mechanism by which the substrate is oxidized may be dependent on the reactivity of the substrate. One could envision certain substrates that would react with the metal-bound hydroperoxide ligand prior to or concerted with 0-0 bond cleavage. This possibility is difficult to assess because of our lack of information concerning the reactivity of HQ2" when complexed to different metal ions. [Pg.110]

As demonstrated in this review, photoinduced electron transfer reactions are accelerated by appropriate third components acting as catalysts when the products of electron transfer form complexes with the catalysts. Such catalysis on electron transfer processes is particularly important to control the redox reactions in which the photoinduced electron transfer processes are involved as the rate-determining steps followed by facile follow-up steps involving cleavage and formation of chemical bonds. Once the thermodynamic properties of the complexation of adds and metal ions are obtained, we can predict the kinetic formulation on the catalytic activity. We have recently found that various metal ions, in particular rare-earth metal ions, act as very effident catalysts in electron transfer reactions of carbonyl compounds [216]. When one thinks about only two-electron reduction of a substrate (A), the reduction and protonation give 9 spedes at different oxidation and protonation states, as shown in Scheme 29. Each species can... [Pg.163]


See other pages where Metal ions oxidative cleavage is mentioned: [Pg.886]    [Pg.886]    [Pg.886]    [Pg.886]    [Pg.886]    [Pg.886]    [Pg.437]    [Pg.399]    [Pg.228]    [Pg.238]    [Pg.638]    [Pg.156]    [Pg.309]    [Pg.130]    [Pg.411]    [Pg.81]    [Pg.273]    [Pg.457]    [Pg.68]    [Pg.49]    [Pg.155]    [Pg.226]    [Pg.71]    [Pg.103]    [Pg.143]    [Pg.126]    [Pg.56]    [Pg.246]    [Pg.529]    [Pg.47]    [Pg.887]    [Pg.309]    [Pg.75]    [Pg.33]    [Pg.36]    [Pg.38]    [Pg.45]    [Pg.140]    [Pg.142]   
See also in sourсe #XX -- [ Pg.90 , Pg.91 ]




SEARCH



Metal cleavage

Metal ions oxidation

© 2024 chempedia.info