Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesylate, formation

Mesylates. Formation of mesylates from alcohols with inversion of configuration is achieved when MsOH is added as nucleophile in the Mitsunobu reaction. [Pg.413]

A two-step sequence consisting of mesylate formation followed by treatment with LiBr can also be used. This procedure involves two steps, but workup and purification are very straightforward. The bromide can be carried out to the next step without further purification in many cases. [Pg.50]

An alternate procedure involves mesylate formation and Sx2 replacement by LiCl. This reaction should be monitored carefully (especially with active alcohols such as allylic and benzylic alcohols) as frequently the chloride by-product will displace the mesylate in situ. [Pg.51]

Mesylate Formation. Treatment of a secondary alcohol with methanesulfonyl chloride in the presence of DMAP yields the corresponding mesylate in good yield (eq 4). ... [Pg.351]

Meyers developed a procedure for the direct conversion of al-lylic alcohols to allylic chlorides that is general for a variety of terpenes (eq 5). Primary alcohols give yields in the 85% range. A single example of a secondary alcohol produced the chloride in 50% yield. Certain allylic alcohols also undergo stereospecific chlorination under the conditions normally employed for mesylate formation (eq 6). ... [Pg.257]

Intramolecular reactions between donor and acceptor centres in fused ring systems provide a general route to bridged polycyclic systems. The cts-decalone mesylate given below contains two d -centres adjacent to the carbonyl function and one a -centre. Treatment of this compound with base leads to reversible enolate formation, and the C-3 carbanion substitutes the mesylate on C-7 (J. Gauthier, 1967 A. Belanger, 1968). [Pg.93]

A very efficient one-pot procedure for the production of 3-hydroxy-3-cephems (45) has been developed which gives the desired product in almost 80% overall yield from (43a) which is readily available from penicillin. TTie sequence of reactions is (1) mesylation to give (43b), (2) formation of enamine (43c), (3) bromination to afford (44) and (4) hydroly-sis/cyclization with hydrochloric acid in methanol to afford (45) which, in some cases, crystallizes directly from the reaction mixture (B-82MI51000). [Pg.294]

Dimethyl sulfoxide (DMSO) has been used to effect the elimination of sulfonates at elevated temperatures (see, for example, ref. 237). Benzene-sulfonates are recommended. The elimination of a variety of sulfonates proceeds readily in this medium in the presence of potassium /-butoxide. A -Compounds have been formed at 100°, but heating is not necessary. The effects of temperature change, orientation of the hydroxy group and changes in the sulfonate employed have been examined. The principal side reaction appears to be formation of the original alcohol (uninverted), particularly with equatorial mesylates at low temperatures it is minimized with axial tosylates. [Pg.331]

Disulfonate esters of vicinal diols sometimes undergo reductive elimination on treatment with sodium iodide in acetone at elevated temperature and pressure (usually l(X)-200°). This reaction derived from sugar chemistry has been used occasionally with steroids, principally in the elimination of 2,3-dihy-droxysapogenin mesylates. The stereochemistry of the substituents and ring junction is important, as illustrated in the formation of the A -olefins (133) and (134). [Pg.344]

The azidohydrins obtained by azide ion opening of epoxides, except for those possessing a tertiary hydroxy group, can be readily converted to azido mesylates on treatment with pyridine/methanesulfonyl chloride. Reduction and subsequent aziridine formation results upon reaction with hydrazine/ Raney nickel, lithium aluminum hydride, or sodium borohydride/cobalt(II)... [Pg.27]

The use of potassium hydrogen carbonate for the cyclization of thiocyan-atohydrin mesylates containing alkali-sensitive groups has been reported, but the selectivity for thiirane formation is reduced. ... [Pg.41]

Formation of the Thiirane Ring from Thiocyanatohydrin Mesylates or Acetates... [Pg.45]

In contrast to phosphorus esters, sulfur esters are usually cleaved at the carbon-oxygen bond with carbon-fluorine bond formation Cleavage of esteri nf methanesulfonic acid, p-toluenesidfonic acid, and especially trifluoromethane-sulfonic acid (tnflic acid) by fluoride ion is the most widely used method for the conversion of hydroxy compounds to fluoro derivatives Potassium fluoride, triethylamine trihydrofluoride, and tetrabutylammonium fluoride are common sources of the fluoride ion For the cleavage of a variety of alkyl mesylates and tosylates with potassium fluoride, polyethylene glycol 400 is a solvent of choice, the yields are limited by solvolysis of the leaving group by the solvent, but this phenomenon is controlled by bulky substituents, either in the sulfonic acid part or in the alcohol part of the ester [42] (equation 29)... [Pg.211]

The reaction of Ab-acetyl-1 -hydroxytryptamine (39) with mesyl chloride (MsCl) in THF in the presence of EtsN provides 1-acetyl-1,2,3,8-tetrahydropyrrolo[2,3-(j] indole (49a, 35%) (70JA343), Ab-acetyl-6-mesyloxytryptamine (50a, 4%), Ab-acetyl-2,3-dihydro-2-oxotryptamine (51a, 5%), l-acetyl-3a-(4-chlorobutoxy)-l,2,3,3a,8,8a-hexahydropyrrolo[2,3-(j]indole (52a, 7%), and Ab-acetyltryptamine (53a, 2%) as shown in Scheme 6 (2000H483). In the same reaction with MsCl, l-hydroxy-Ab-methoxycarbonyltryptamine (34) produces 50b (7%), 51b (34%), and 52b (9%), while the formation of 49b is not observed at all. In the case of Ab-trifluoroacetyl-l-hydroxytryptamine (48), 49c (45%), 50c (8%), 51c (4%), and 52c (6%) are produced. These data suggest that the yield of 49 increases, whereas the yield of 51 decreases in the order of electron-withdrawing ability of Ab substituents (COOMe < COMe < COCF3). Stability of 49 seems to govern the quantity of 51, which is probably formed by hydrolysis of 49. [Pg.111]

O-isopropylidene derivative (57) must exist in pyridine solution in a conformation which favors anhydro-ring formation rather than elimination. Considerable degradation occurred when the 5-iodo derivative (63) was treated with silver fluoride in pyridine (36). The products, which were isolated in small yield, were identified as thymine and l-[2-(5-methylfuryl)]-thymine (65). This same compound (65) was formed in high yield when the 5 -mesylate 64 was treated with potassium tert-hx Xy -ate in dimethyl sulfoxide (16). The formation of 65 from 63 or 64 clearly involves the rearrangement of an intermediate 2, 4 -diene. In a different approach to the problem of introducing terminal unsaturation into pento-furanoid nucleosides, Robins and co-workers (32,37) have employed mild base catalyzed E2 elimination reactions. Thus, treatment of the 5 -tosylate (59) with potassium tert-butylate in tert-butyl alcohol afforded a high yield of the 4 -ene (60) (37). This reaction may proceed via the 2,5 ... [Pg.141]

Intermediate 10 must now be molded into a form suitable for coupling with the anion derived from dithiane 9. To this end, a che-moselective reduction of the benzyl ester grouping in 10 with excess sodium borohydride in methanol takes place smoothly and provides primary alcohol 14. Treatment of 14 with methanesulfonyl chloride and triethylamine affords a primary mesylate which is subsequently converted into iodide 15 with sodium iodide in acetone. Exposure of 15 to tert-butyldimethylsilyl chloride and triethylamine accomplishes protection of the /Mactam nitrogen and leads to the formation of 8. Starting from L-aspartic acid (12), the overall yield of 8 is approximately 50%, and it is noteworthy that this reaction sequence can be performed on a molar scale. [Pg.253]

Transformation of bromocriptine free base 2 into water soluble salt -mesylate, is the only way to obtain a suitable therapeutical form. Crystallization of mesylate using alcohol as a solvent in the presence of excess of strong acid, e.g. methanesulphonic acid can induce formation of 12 -0-alkyl-derivative 2. Until now this derivatisation of ergot molecule has been practically unknown. In continuation we developed the preparative method for obtaining these compounds, (using tetrafluoroboric acid as a catalyst) (ref. 20). [Pg.82]

Carba-sugars of the a-L-altro and P-D-gluco modifications were prepared from 149 by way of 155. 0-Mesylation of 155 with an excess of mesyl chloride and pyridine resulted in formation of the cyclohexenealdehyde 159, accompanied by y -elimination. Reduction of 159 with sodium borohydride gave the cyclohexenemethanol 160, which is the antipode oP 141. [Pg.46]


See other pages where Mesylate, formation is mentioned: [Pg.191]    [Pg.80]    [Pg.27]    [Pg.225]    [Pg.193]    [Pg.135]    [Pg.185]    [Pg.258]    [Pg.151]    [Pg.261]    [Pg.361]    [Pg.191]    [Pg.80]    [Pg.27]    [Pg.225]    [Pg.193]    [Pg.135]    [Pg.185]    [Pg.258]    [Pg.151]    [Pg.261]    [Pg.361]    [Pg.81]    [Pg.172]    [Pg.241]    [Pg.117]    [Pg.28]    [Pg.198]    [Pg.85]    [Pg.98]    [Pg.206]    [Pg.197]    [Pg.45]    [Pg.74]    [Pg.885]    [Pg.423]    [Pg.942]    [Pg.130]   
See also in sourсe #XX -- [ Pg.128 , Pg.203 , Pg.274 , Pg.436 , Pg.572 ]




SEARCH



Ether formation mesylate

Mesylate

Mesylate formation phenol

Mesylation

© 2024 chempedia.info